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On the basis of concepts from the mathematical theory of approximation of functions, we propose a method
of deriving microcanonical transition state theory rate coefficients, both as a function of the total energy and
the total angular momentum, from thermal data, namely, the limiting high-pressure rate coefficients. The
method does not require the knowledge of the frequencies and degeneracies of the transition state and is
general in that it allows for non-Arrhenius forms of thermal data, but it only applies to reactions possessing
an intrinsic energy barrier. It is shown that the derived microcanonical rate coefficient is almost identical to
the computed Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficient using explicit
frequencies and degeneracies of the transition state, and furthermore, that the difference between the two is
uniformly distributed over the entire range of total energy and the entire range of the total angular momentum.
Comparison of the microcanonical coefficients from the proposed method with those from a standard
nonvariational RRKM calculation is presented for the unimolecular decomposition of the ethyl radical and
the unimolecular isomerization of methyl isocyanide. The agreement is shown to be excellent. A theoretical
analysis of the fine structure of the microcanonical rate coefficient near the threshold of the reaction is
enunicated and the difficulty of extending the method to obtain variational microcanonical rate coefficients
is described. We also, briefly, speculate on the possible merits of certain theoretical methods of analysis for
coping with the representation of thermal data, whose argument is the temperature which is of semiinfinite
range.

1. Introduction

The Rice-Ramsperger-Kassel-Marcus (RRKM) method,1

a version of microcanonical transition state theory, derived as
an approximate statistical theory for generating microscopic rate
coefficients and promulgated2 as a predictive tool for uni-
molecular and bimolecular kinetics, is now commonly used by
chemical kineticists3 to estimate the absolute temperature- and
pressure-dependent rate constants of elementary dissociation,
radical recombination, ion-molecule, and chemically-activated
reactions. Its exercise requires knowledge of the transition-
state properties, in particular the barrier heights for dissociation,
degeneracies, frequencies, rotational constants, separation of
fragments, equilibrium bond lengths, and the interfragment
potential parameters. The estimation of such properties of the
transition state is nontrivial and is made from a combination of
heuristics,4 ab initio calculations,5 and highly state-resolved
experiments near the threshold of reaction.6 Such esimation is
not always practicable for large molecules due to the compu-
tational complexity of quantum-dynamics calculations and for
reactions which possess no intrinsic barrier. Reactions without
an intrinsic barrier are those which have no barrier in the
exoergic direction and whose barrier equals the endoergicity
of the reverse diection; for such reactions it is necessary to

perform a variational analysis.7-9 Furthermore, not only is the
computation of activation barriers from ab initio methods
possible for simple reactions alone, and that too with only
moderate accuracy, but careful examination of the potential
energy surface is required for systems exhibiting large tunneling
effects or other dynamical characteristics.

Without abandoning the concept of the transition state, we
propose here a method of generating the microcanonical rate
coefficientk(E,J) for the dissociation of a molecule, whereE is
the energy of the molecule andJ is the total angular momentum
quantum number, solely from the knowledge of the limiting
high-pressure rate coefficient, which may be obtained from
experimental observations augmented by extrapolation, and the
interfragment parameters of the transition state. Our method
does not require the knowledge of the transition state frequencies
and degeneracies. These are implicit in the knowledge of the
limiting high-pressure rate coefficient, because one can always
compute the limiting high-pressure rate coefficient from el-
ementary transition state thermodynamics given the transition
state frequencies and degeneracies. The microcanonical rate
coefficient k(E,J) is given in microcanonical transition state
theory1 by

Here G*(E - EJ) is the integrated density of states for the
transition state withEJ being the effective critical energy for
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k(E,J) )
RG*(E - EJ)

hN(E)
(1.1)
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the dissociation. The effects due toJ are subsumed inEJ. N(E)
is the density of states of all of the chemically active modes of
the dissocating molecule at the sameE. The chemically active
modes encompass all vibrational and internal rotational modes
and for nonlinear molecules their relevant one- and two-
dimensional external rotational degrees of freedom,R is the
reaction path degeneracy.h is Planck’s constant. Our method
obviates the need to know the transition state frequencies and
degeneracies for the computation of the accessible quantum
states of the transition state. This is achieved by the use of an
inverse Laplace transformation to estimate the microcanonical
rate coefficientk(E,0) from the equilibrium average ofk(E,J).
During the course of our calculation ofk(E,0) we explicitly take
into account Forst’s centrifugal correction factor,1 which
represents averages over the angular momenta. Then, making
the observation that the number of accessible quantum states is
a univariate function in the total energy, the knowledge ofk(E,0)
and the density of states of the chemically active modesN(E)
of the molecule yields the microcanonical rate coefficientk(E,J)
for any specifiedE andJ by means of a simple interpolation
technique. The only transition-state properties required in our
prescription are the rotational constants such as the moments
of inertia and the interfragment potential. These particular
transition state properties are easier to estimate than the
frequencies and degeneracies of the transition state. The
position of the transition state is located at the centrifugal
maximum of the effective interfragment potential. We make
the semiclassical approximation in summing over the total
angular momentum quantum numbers. Within the limitations
of this approximation, the microcanonical rate coefficients thus
generated by our method show excellent agreement with those
obtained from methods of generating nonvariational RRKM rate
coefficients10 which require explicit knowledge of the frequen-
cies and degeneracies of the transition state in their concomitant
calculations.

The use of inverse Laplace transforms in unimolecular
reaction-rate theory is very well documented. Originally
proposed by Bauer11 and Slater12 and later introduced1,9 as a
means of obtaining the density of states from the knowledge of
the partition function, it has been suggested as an alternative
means of evaluating the microcanonical rate coefficient without
any knowledge of the transition state properties.13-15 In such
treatments, rotational effects are treated simply by setting the
angular momentum to zero. When a strict Arrhenius form for
the limiting high-pressure rate coefficientk∞(T) is presumed,

wherekB is the Boltzmann constant andT is the temperature,
one obtains for the microcanonical rate coefficientkRRK(E),

whereA∞ is the preexponential factor independent of temper-
ature andE∞ is the high-pressure activation energy in the
Arrhenius expression for the limiting high-pressure rate coef-
ficient. N(E) is the density of states for all internal degrees of
freedom and vanishes for allE e 0. Equation 1.3 implies that
only modes withE > E∞ are chemically active.kRRK(E)
represents the microcanonical rate coefficient generated by the
Rice-Ramsperger-Kassel (RRK) theory; apart fromE∞, no
transition state properties are required. As is well-known, in a
classical mechanical treatment with harmonic oscillators and
with the total angular-momentum quantum number set to zero,

the microcanonical transition state theory rate coefficient is
identical with this RRK expression (eq 1.3). Two principal
objections have been raised in connection with the expression
1.3: (a) Equation 1.3 breaks down if the limiting high-pressure
rate coefficient does not follow a strict Arrhenius rate law.
Objective arguments against this objection have been raised by
Pritchard; see page 39 of ref 15. (b) When tunneling phenomena
occur, the first reactive state may occur at an energy substantially
below E∞. Equation 1.3 will then be invalid, particularly for
weak collision systems near their low-pressure limit.

In our inverse Laplace transform method for generating the
microcanonical rate coefficients, we represent the limiting high-
pressure coefficient as

whereA∞(T) is a function of temperature and can be nonmono-
tonic. We expressk̃∞(T)

wheref∞(T) is a centrifugal factor,1 as a finite sum of Laguerre
basis functions16 in temperature. An advantage of such a
representation is that any arbitrary nonArrhenius form for the
limiting high-pressure rate coefficient can be approximated
accurately. The Laguerre basis set is orthonormal and complete
over [0, ∞]. They are eigenfunctions of the Sturm-Liouville
operator and, indeed, form the optimal basis16 for any function
over the semi-infinite interval [0,∞]. In addition, equation 1.5
is analytic over the entire complex plane apart from poles, and
hence, it is amenable to the application of the Laplace transform.
We have thus surmounted criticism (a) of the previous para-
graph. It is instructive to note that when the centrifugal factor
is unity andA∞(T) is independent of temperature we recover
the RRK result of equation 1.3.

In general, tunneling makes only a minor contribution to the
microcanonical rate coefficient. When the effects of tunneling
are important, the rate law for the limiting high-pressure rate
coefficient will be pronounced non-Arrhenius at low tempera-
tures. Under such circumstances, we expect our Laguerre-
function representation of eq 1.4 to approximate the rate law
well, as they form an optimal basis set for approximating any
arbitrary temperature dependence of the rate coefficient. We
have thus also surmounted criticism (b).

Thus we propose in this paper a method, founded on the
knowledge of the experimentally obserVed limiting high-pressure
rate coefficient, for generating microcanonical transition state
theory rate coefficients from a set of minimal transition state
parameters which are easily estimated.Our method does not
neglect any of the rotational degrees of freedom and is exact
for all temperatures above which the semiclassical approxima-
tion holds true. We expect our method to be very useful for
multiple-well systems where knowledge of the frequencies and
degeneracies of isomerization transition states is not easily
obtainable.

The remainder of the paper is organized as follows. Section
2 provides a complete description of our inverse Laplace
transform method. We describe the interpolation strategy to
obtain the integrated density of states of the transition state and
the consequent derivation of the microcanonical transition state
theory rate coefficient. All of this is illustrated within the
context of the Laguerre basis representation of the ratio of the

k∞(T) ) A∞e-E∞/kBT (1.2)

kRRK(E) ) A∞

N(E - E∞)

N(E)
(1.3)

k∞(T) ) A∞(T) e-E∞/kBT (1.4)

k̃∞(T) )
k∞(T)

f∞(T)
)

A∞(T)

f∞(T)
exp(-

E∞

kBT) (1.5)
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limiting high-pressure rate coefficient to the centrifugal factor.
Limitation of the method for situations where variational
microcanonical rate coefficients are desired is described. Sec-
tion 3 describes a pathological behavior of the inverse Laplace
rate coefficients when a modified Arrhenius form is used to
represent the limiting high-pressure rate coefficient. The
microscopic rate coefficients exhibit negative curvature at large
energies due to a mathematical artifact of a modified Arrhenius
formalism. Section 4 compares the microcanonical rate coef-
ficients generated by our method for two reactions. The first
is the unimolecular decomposition of the ethyl radical. The
computations for this reaction, from our nonvariational inverse
Laplace scheme, are compared with those from Gilbert’s RRKM
code10 which requires explicit knowledge of the transition state
frequencies and degeneracies. This is done for a range of
angular momentum quantum numbers. We show that excellent
agreement is obtained. The second reaction is the isomerization
of methyl isocyanide. The computations for this reaction,
performed over a wide range of angular momentum quantum
numbers, from our nonvariational inverse Laplace scheme are
compared with those from Gilbert’s RRKM code. We show
that, once again, excellent agreement is obtained. The inverse
Laplace microcanonical rate coefficients reproduce the fine
structure of the microcanonical transition state theory rate
coefficients. Section 5 discusses the implications of coping with
the knowledge of the limiting high pressure coefficient obtained
from experimental measurements over a finite temperature
range. Section 6 describes our conclusions. Throughout this
paper we adhere to the notations set forth by Forst.1

2. The Inverse Laplace Transform Method

Under the assumption holding at high pressures that collisions
are much more rapid than chemical reaction, the reacting system
can be represented by the Gibbsian canonical ensemble wherein
an equilibrium population of the molecules is maintained over
all energies and angular momenta. Thus the limiting high-
pressure rate coefficient may be interpreted as the average of
the microcanonical rate coefficient over the Maxwell-Boltz-
mann distribution,

P(E,J)equilibrium is the equilibrium probability density function
for a specificE andJ. It has been pointed out by Forst1 that at
the high-pressure limit, within the context of a steady state
analysis, the averaged microcanonical rate coefficient is identical
with the microcanonical rate coefficient represented by equation
2.1. Making the assumptions that rotations may be treated
semiclassically and that the overall rotations are completely
decoupled fromE, i.e., the moments of inertia are independent
of E, the averaged microcanonical rate coefficient may be
expressed as

HereQ(T) is the partition function for the pertinent degrees of
freedom involved in the density of statesN(E). Qrot(T) is the
partition function for the two-dimensional rotor of energyEr(J).
All other symbols retain their previous meanings. It follows

from eqs 2.1 and 2.2 that

whereL-1{ } is the inverse Laplace transform operator with
respect to the variableE and the parameters is given by

From the Fourier-Mellin integration theorem,16 equation 2.3
may be written down as

wherec is the abscissa of integration in the complex plane.
Although the right-hand side of eq 2.5 can be evaluated upon
the provision of the limiting high-pressure rate coefficient, the
integrand on the left-hand side cannot be deconvoluted to obtain
the microcanonical rate coefficientk(E,J) explicitly. It is thus
necessary to postulate a model for the microcanonical rate
coefficient.

2.1. A Model for k(E,J): Microcanonical Transition State
Theory. The microcanonical rate coefficient is given in general
by

where Γ(E,J) is the cumulative reaction probability at total
energyE and total angular momentumJ. In the framework of
transition state theory, the cumulative reaction probability is
approximated by the product of the reaction-path degeneracy
and the number of accessible quantum statesG*(E - EJ) for
the modes orthogonal to the reaction coordinate and thus the
microcanonical transition state theory rate coefficient is given
by

The statistically important modes making effective contributions
to the reactive flux are the transitional modes and the number
of accessible quantum states is evaluated at the position of the
transition state. The position of the transition state depends on
the total energy, total angular momentum, and the structure of
the interfragment potential, and it may be located at the
centrifugal maximum of the effective interfragment potential.
This is a simple and nonvariational calculation. Under these
circumstances we may write

whereφ(J) is the maximum value of the effective interfragment
potential. Description of forms of the interfragment potentials
is to be found in ref 1 and a recapitulation in ref 17.

For reactions without a chemical barrier, such as radical
recombinations and ion-molecule associations or their reverse
counterparts, it has been demonstrated7-9 that it is necessary to
perform a variational calculation to locate the position of the
transition state at the local minimum ofG*(E - EJ(t)), the

k∞(T) ) 〈k(E,J)〉equilibrium ) ∑
J)0

∞ ∫0

∞
k(E,J)P(E,J)equilibriumdE

(2.1)

〈k(E,J)〉equilibrium ) 1
Q(T)Qrot(T)

∫0

∞∫EJ

∞
(2J + 1)N(E)k(E,J)

exp(-
E + Er(J)

kBT )dEdJ (2.2)

L-1{∫0

∞∫EJ

∞
(2J + 1)N(E)k(E,J)

exp(-s(E + Er(J)))dE dJ} ) L-1[k∞(s)Q(s)Qrot(s)} (2.3)

s ) 1
kBT

(2.4)

∫0

∞
(2J + 1)N(E - Er(J))k(E - Er(J),J)dJ )

1
2πi∫c-i∞

c+i∞
k∞(s)Q(s)Qrot(s) exp(sE)ds (2.5)

k(E,J) )
Γ(E,J)

hN(E)
(2.6)

k(E,J) )
RG*(E - EJ)

hN(E)
(2.7)

EJ ) E0 - Er(J) + φ(J) (2.8)
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number of accessible quantum states of the transition state along
the reaction coordinate,

wheret is the distance along the reaction coordinate. The rest
of the presentation of the concepts underlying our inverse
Laplace formalism will be based on the nonvariational micro-
canonical transition state theory. Finally in Section 2.6 the
difficulties in adapting the inverse Laplace formalism for the
estimation of variational microcanonical rate coefficient will
be discussed.

2.2. Computation ofk(E,0). Upon substituting the transition
state theory expression for the microcanonical rate coefficient
into equation 2.2, the following relationship

results. Following Forst,1 the angular momentum portion of
the integrand in eq 2.10 may be separated out by utilizing eq
2.8, and a temperature-dependent centrifugal factor,f∞(T),
representing the average over the angular momenta,

can be obtained. It is then observed that the averaged
microcanonical rate coefficient may be written as

wherek(E,0) is identically zero whenE < E0, and

whenE g E0. Now that the preliminaries are completed, our
next step is to obtaink(E,0) via the inverse Laplace transform
of eq 2.12. It follows from 2.4, 2.12, and 2.13 that

where L{ } is the Laplace transform with respect to the
parameters and the variableE. The inverse Laplace transform
of eq 2.14 may be written down as

Each ofk∞(s), Q(s), andf∞(s) are individually inverse Laplace
transformable, and hence, using the convolution theorem16 for
Laplace transforms we may write

HereX is the Faltung operator.16 Equation 2.16 is exact and is
easily evaluated upon the provision of a functional form for
k∞(s), the limiting high-pressure rate coefficient and the
centrifugal factork∞(s), sinceL-1{Q(s)} is simply N(E) itself.

2.2.1. Computing the Centrifugal Factor.Equation 2.16
could have been written down explicitly as

Even though all of the individual terms in the convolution (eq
2.17) possess inverse Laplace transforms, in general, explicit
analytical forms exist only forL-1{Q(s)}. The coefficientk∞(s)
is an arbitrary function of temperature, and hence, its inverse
Laplace transform can be evaluated only numerically.L-1{1/
f∞(s)} can also be evaluated only via numerical means or by
the method of steepest descents18 by computing the location of
a saddle point. The method of steepest descents, although
widelyused, isnotnecessarily themethodofutmostaccuracy.19-22

Numerical evaluation of contour integrals, such as in eq 2.5, is
cumbersome. Among the numerical inversion methods, the
Stehfest algorithm20 requires only a few function evaluations
along the real axis and its convergence is therefore rapid
although the test for the convergence of this algorithm is not
straightforward. Alternatively, one may use the Dubner and
Abate method;19 its convergence properties, albeit not as
attractive as the Stehfest algorithm’s are easy to test and the
convergence itself may be accelerated using Pade’s approxi-
mants as set forth by Crump.21

For reasons of accuracy, we compute numerically the ratio

and fit it to a Laguerre basis sum, the description of which
follows in the next section. Analytical forms for the inverse
Laplace transform of Laguerre basis functions are readily written
down. The evaluation of the ratio in eq 2.18 requires the
computation of the centrifugal factor

The partition functionQrot(s) is given by the integral

The next step is the computation of the integral

This can be done analytically for some forms of the interfrag-
ment potential as shown in Forst,1 but in general, for other forms
of the interfragment potential, it is done most effectively via
the Gauss-Chebyshev quadrature23 adapted for the semiinfinite
interval, [0,∞] by the introduction of a scale parameterL. The
quadrature formula is then given by

Here the quadrature points are the roots of theNth order
Chebyshev polynomial in (J - L)/(J + L). These quadrature

d
dt

G*(E - EJ(t)) ) 0 (2.9)

〈k(E,J)〉equilibrium ) k∞(T) )
R

hQ(T)Qrot(T)
∫0

∞∫EJ

∞
(2J + 1)G*(E - EJ)

exp(-
E + Er(J)

kBT )dEdJ (2.10)

f∞(T) ) 1
Qtot(T)

∫0

∞
(2J + 1) exp(-

φ(J)
kBT)dJ (2.11)

〈k(E,J)〉equilibrium ) k∞(T) )
f∞(T)

Q(T)
∫0

∞
k(E,0)N(E) exp(- E

kBT)dE (2.12)

k(E,0) )
RG*(E - E0)

hN(E)
(2.13)

k∞(s)Q(s)

f∞(s)
) R

h
L{G*(E - E0)} ) L{k(E,0)N(E)} (2.14)

k(E,0)N(E) ) L-1{k∞(s)Q(s)

f∞(s) } (2.15)

k(E,0)N(E) ) L-1{k∞(s)

f∞(s)} X L-1{Q(s)} (2.16)

k(E,0)N(E) ) L-1{k∞(s)} X L-1{Q(s)} X L-1{ 1
f∞(s)} (2.17)

k̃∞(s) )
k∞(s)

f∞(s)
(2.18)

f∞(s) ) 1
Qrot(s)

∫0

∞
(2J + 1) exp(-sφ(J))dJ (2.19)

Qrot(s) ) ∫0

∞
(2J + 1) exp(-s{E0 - EJ + φ(J)})dJ (2.20)

∫0

∞
(2J + 1) exp(-sφ(J))dJ (2.21)

∫0

∞
(2J + 1) exp(-sφ(J))dJ ≈

π

N
∑
i)0

N-1xJi

L
(Ji + L)(2Ji + 1) exp(-sφ(Ji)) (2.22)
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points may be written down analytically23 as

The scale parameterL is empirically chosen, and its choice
should ensure that the absolute value of exp(-sφ(JN-1)) is
negligible. This determines the number of quadrature points,
N for the accurate transcription of the integral to a discrete sum.
For the various choices described in ref 1 and recapitulated in
ref 17,φ(J) decays rather rapidly. In our computations it was
found that a choice ofN taken to be 250 gave rise to an
inaccuracy of no more than 0.02% in the quadrature sum. The
use of Gaussian points to approximate definite and improper
integrals is well-known in approximation theory, and little is
to be gained by repeating the details here. The reader will find
good expositions in treatises such as Cheney’s.24 The partition
function given by eq 2.20 may be similarly computed using
this quadrature.

2.2.2. The Laguerre Representation.Once the centrifugal
factor is computed as prescribed in the previous section, the
next task is to approximate the ratiok̃∞(s) by a finite Laguerre
basis set,

whereLn(s-1) is the Laguerre polynomial16 of order n. The
coefficients{Bn; 0 e n e M - 1} are determined by a least-
squares fit to the numerically tabulated values of the ratio of
the limiting high-pressure rate coefficient to the centrifugal
factor. The integer parameterM is chosen to provide as accurate
a representation as desired. This form possesses the property
that the ratiok∞(s)/f∞(s) is infinite when the temperature goes
to infinity becausef∞(s) goes to unity (see eq 2.19) andk∞(s)
diverges. This property prevents pathological behavior in the
computed microcanonical rate coefficient which might otherwise
arise and will be the subject of discussion in section 3. The
Laguerre basis set{Ln(s-1)} is orthonormal in [0,∞) with respect
to the weight function exp(-1/2s), and the Laguerre polynomials
are evaluated via the following recursion relations.

The Laguerre basis functions are straightforwardly Laplace
transformable.25 Noticing the correspondence between eqs 1.4
and 2.24, what has been essentially done here is that the ratio
of the preexponential in the limiting high-pressure rate coef-
ficient to the centrifugal factor has been approximated by a sum
of Laguerre polynomials inkBT,

Just as the Fourier basis is the optimal approximating basis for
a periodic function in [-1, 1] and a Chebyshev basis is the

optimal approximating basis for a nonperiodic function in [-1,
1] the Laguerre basis{Ln(s-1)} is the optimal approximating
basis24 for a general function which is defined over the support
[0, ∞] and is dominated by the exponential weight function as
kBT f 0. The highest exponent ofkBT in eq 2.24 isM - 1.

which has been used on empirical grounds for the high-
temperature behaviour ofA∞(T). However, as we discussed in
section 1, because of tunneling such behavior cannot be extended
to low temperatures for some systems despite the fact that it
follows from simplified applications of transition state theory.

2.2.3. Final Analytical Expression for k(E,0).It is conve-
nient to reexpress eq 2.24 in the following form,

where the coefficients{ân; 0 e n e M - 1} possess a simple
linear algebraic relationship to the coefficients{Bn; 0 e n e M
- 1}. Equation 2.16 may now be written down as

Hereδ(E′ - E∞) is the Dirac delta function andu(E′ - E∞) is
the Heaviside function. We may write eq 2.31 as

The first term on the right-hand side of eq 2.32 is the standard
RRK expression for the microcanonical rate coefficient. We
may now note from eq 2.13 that the integrated density of the
transition state may be written as

It should be noted that in eq 2.33E0 is not strictly identical to
E∞, although kineticists usually estimateE0 to be theE∞ obtained
from high-pressure thermal experimental observations.

2.2.4. Comments on the Laguerre Representation: Uniform
Approximation. We have approximated the ratio of the limiting
high-pressure rate coefficient to the centrifugal factor by a sum
of Laguerre basis functions; this set of basis functions can be
shown to be the optimal basis set for such an approximation
and minimizes approximation errors due to the classically well-
known Runge phenomenonsa characteristic of nonuniform
approximation.24 The inverse Laplace transform of the Laguerre
sum is analytically written down and the microcanonical rate
coefficient for zero angular momentum is then obtained.

Ji-1 ) L
(1 + cos[(2i - 1)

2N
π])

(1 - cos[(2i - 1)
2N

π])
(2.23)

k̃∞(s) ≈ ∑
n)0

M-1

Bn exp(-E∞s)Ln(s
-1) (2.24)

L0(s
-1) ) 1 (2.25)

L1(s
-1) ) 1 - s-1 (2.26)

(n + 1)Ln+1(s
-1) ) [(2n + 1) - s-1]Ln(s

-1) - nLn-1(s
-1)

(2.27)

A∞(s)

f∞(s)
≈ ∑

n)0

M-1

BnLn(s
-1) (2.28)

lim
Tf∞

A∞(T) ∝ (kBT)M-1 (2.29)

k̃∞(s) ≈ ∑
n)0

M-1

ân

exp(-sE∞)

sn
(2.30)

k(E,0)N(E) ) ∫0

E{δ(E′ - E∞)â0 +

∑
n)1

M-1(E′ - E∞)n-1

(n - 1)!
u(E′ - E∞)ân}N(E - E′)dE′ (2.31)

k(E,0) ) â0

N(E′ - E∞)

N(E)
+

∑
n)1

M-1

ân∫0

E
(E′ - E∞)n-1

(n - 1)!
u(E′ - E∞)

N(E - E′)

N(E)
dE′ (2.32)

G*(E - E0) )
h

R(â0N(E - E∞) +

∑
n)1

M-1

ân∫0

E
(E′ - E∞)n-1

(n - 1)!
u(E′ - E∞)N(E - E′)dE′) (2.33)
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Schoenenberger and Forst26 have considered the Gauss-
Laguerre discretization of the semiinfinite integral in eq 2.12
and this is quite different from the method we have presented.
Their procedure amounts to a discrete Laplace transform over
a finite range of the total energyE. They have shown that in
using such an inversion strategy to calculate the microcanonical
rate coefficients, large errors can result with high oscillations
as a function of the total energy. They have also shown that
approximating the ratio of the limiting high-pressure rate
coefficient to the centrifugal factor by a sum of simple
polynomials ins and analytically inverting the resulting expres-
sion results in substantially lower errors for the calculated
microcanonical rate coefficient than that obtained from the
Gauss-Laguerre discretization of the Laplace transform.

Approximation theory tells us that approximating the ratio
of the limiting high-pressure rate coefficient to the centrifugal
factor by a sum of Laguerre basis functions, as we have done,
is vastly superior to approximation by a sum of simple
polynomial functions. The choice of a Laguerre basis serves
to overcome the Runge phenomenon. This means that the
Laguerre approximant obtained via the least-squares minimiza-
tion will converge uniformly24 to the function over the entire
interval of approximations ∈[0, ∞) or equiValently T∈[0, ∞),
most importantly, this means that the errors in the micro-
canonical rate coefficients computed via the inverse Laplace
methodology areuniformly distributed oVer the entire semifinite
range, [0, ∞), of the total energyE. If one were to fit a function
to a sum of arbitrary polynomials or non-linear functions the
resulting approximant, besides being numerically ill-conditioned,
will capture the function well only in the middle of the interval
while exhibiting highly oscillatory behavior toward the ends of
the interval; this pathology is known as the Runge phenomenon.
The Laguerre basis set is able to overcome this precisely because
the Sturm-Liouville weight function for the Laguerre basis is
a damping exponential.

2.3. Computingk(E,J) by Interpolating for the Integrated
Density. In order to computek(E,J) for a nonzero angular
momentum, we must know the integrated density of statesG*(E
- EJ) of the transition state. Knowledge ofG*(E - E0) is
sufficient to determineG*(E - EJ) through the relation

In other words, the knowledge ofk(E,0) from the inverse
Laplace step in eq 2.32 and the density of states of all chemically
active modes of the dissociating moleculeN(E) provides us with
the integrated density of statesG*(E - EJ) for any EJ. We
suggest here a smooth radial basis function (RBF) approximant27

to the integrated density of states. In the RBF approch we fit

to the special form

with the constraint

Here the norm|E - Ei| denotes the absolute value ofE - Ei.
Thed parametrsλi, i ) 1, ...,d, are to be determined by matrix

inversion such that eqs 2.36 and 2.37 hold. TheEi, i ) 1, ...,
d (called the centers of the radial bases) are distinct and are the
points at whichk(Ei,0) is obtained from the inverse Laplace
transform procedure. It has been shown that systems such as
those described by eqs 2.36 and 2.37 will be nonsingular for
many choices28 of the radial basisφ(|E - Ei|), including the
thin-plate splines recommended by us. Thin-plate splines are
given by

RBF approximants consisting of thin-plate splines may be
evaluated rapidly through a truncated Laurent-expansion tech-
nique.29 The numerically stable and well-conditioned inversion
of eqs 2.36 and 2.37 is best done by normalizing the norms
onto the interval [-1, 1] and by applying a sequence of House-
holder transformations30 to the resultant equations. Once the
effective critical energy for the dissociationEJ is computed, the
interpolated integrated density of the transition state may be
used to obtaink(E,J) from eq 2.7 for any total energyE and
any nonzero angular momentum quantum numberJ.

2.4. Transition State. Our motive in this section is to show
the relation between the frequencies and degeneracies of the
transition-state and the inverse Laplace expression for the
integrated density. The RRKM expression for the integrated
density at zero angular momentum is given by

whereN*(E′) is the density of states of the transition state at
energyE′. The inverse Laplace expression for the integrated
density at zero angular momentum is given by

In the limit of M f ∞ eqs 2.39 and 2.40 are identical. Because
the Laguerre basis is orthonormal and complete over [0,∞],
âM decays rapidly as a function ofM. In the cases examined
by us âM is negligibly small forM > 10. We note that the
forms of eqs 2.39 and 2.40 are identical, in the sense that both
of them are convolutions in energy.N*(E′) is a function of the
frequencies and degeneracies of the transition state. Similarly
{ân; 0 e n e M - 1} are functions of the frequencies and
degeneracies of the transition state, except that they have been
determined numerically from the knowledge of the limiting high-
pressure rate coefficient alone. The smooth function ap-
proximation to the density of states of the transition state is
then given by

G*(E - EJ) ) G*(E′J - E0), E′J ) E + (E0 - EJ) (2.34)

h
R

k(E,0)N(E) (2.35)

h

R
k(E,0)N(E) ) λ0 + ∑

i)1

d

λiφ(||E - Ei||) (2.36)

∑
i)1

d

λi ) 0 (2.37)

φ(|E - Ei|) ) |E - Ei|
2log|E - Ei| (2.38)

G*(E - E0) ) ∫0

E-E0N*(E′) dE′ (2.39)

G*(E - E0) )
h

R(â0N(E - E∞) +

∑
n)1

M-1

ân∫0

E
(E′ - E∞)n-1

(n - 1)!
u(E′ - E∞)N(E - E′)dE′) (2.40)

N*(E) ) â0

h

R

d

dE
N(E + E0 - E∞) +

∑
n)1

M-1

ân

h

R

(E + E0 - E∞)n-1

(n - 1)!
u(E + E0 - E∞)N(E0) +

∑
n)1

M-1

ân

h

R
∫0

E + E0
(E′ - E∞)n-1

(n - 1)!
u(E′ - E∞)

d

dE
N(E + E0 - E′)dE′

(2.41)
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Equation 2.41 is obtained by differentiating eq 2.40; an
application of the Newton-Leibniz formula. We may note that
eq 2.40 is of utility in determining the critical energy for
dissociation E0 from the knowledge of the high-pressure
activation energyE∞ and the coefficients{ân; 0 e n e M -
1}.

2.5. Threshold Behavior of the Inverse Laplacek(E,J).
It has been shown by Rice31 and Forst13 that the threshold
behavior of the microcanonical transition state theory rate
coefficient obeys

whereE0 is the effective critical energy for the dissociation of
the molecule when the angular momentum quantum number is
set to zero. For very low energiesN(E) can be viewed as a
linear combination of discrete delta functions which are widely
spaced. This gives rise to the fine structure or jaggedness of
the microcanonical transition state theory rate coefficients which
is pronounced at very low energies, but present in principle at
higher energies.

At the threshold, the inverse Laplace microcanonical rate
coefficient obeys

where we have taken the appropriate limit of eq 2.32. For
consistency with microcanonical transition state theory, it is
necessary that

where we have neglected theO(kBT) term in eq 2.43. The lack
of experimental information often leads kineticists to setE0 to
E∞. However, a semiclassical model of the density of states
will lead to zero density of states at zero energy. Equation 2.44
would then imply thatâ0 ) ∞. Our examination of specific
cases leads us to observe thatâ0 is finitely large andN(E0 -
E∞) is thus small but nonzero. This implies thatE0 exceedsE∞
by a fewkBT conforming the analysis presented by Forst in ref
13. As a consequence,EJ < E0 for anyJ, which is physically
plausible. E0 can be numerically estimated fromE∞ by applying
the Newton-Raphson technique to equation 2.40.

2.6. Variational Microcanonical Rate Coefficients and the
Inverse Laplace Method. A prinicipal advantage of the inverse
Laplace procedure described here is that there are no adjustable
parameters and that guessing the frequencies and degeneracies
of the transition state is obviated. A drawback of the method
is that the position of the transition state is not located
variationally, and hence, the microcanonical rate coefficients
thus generated will not be descriptive of the kinetics of simple
bond-fission unimolecular reactions, particularly at low tem-
peratures. Extension of the inverse Laplace procedure to
incorporate a variational treatment presents difficulties. Con-
sider eq 2.14 within a variational framework,

where tmin is the reaction coordinate (for zero angular

momentum) at whichG*(E - E0(t)) possess a local minimum.
The centrifugal factorf∞

var(s) is now given by

whereQvar
rot(T) is the associated partition function.φ(J) is now

evaluated attmin(J), which is a function ofEJ and is the reaction
coordinate at whichG*(E - EJ(t)) possesses a local minimum.
Evaluation of the centrifugal factor cannot be accomplished
unlesstmin(J) is known for all J. Without any knowledge of
the transition state frequencies and degeneracies, which will be
dependent on the reaction coordinate, it is not possible to obtain
tmin(J) for eachJ.

This seems to render the inverse Laplace framework self-
defeating because the essential appeal in the non-variational
treatment has been that the knowledge of the limiting high-
pressure rate coefficient circumvents the need to know the
transition state frequencies and degeneracies. Because the
limiting high-pressure rate coefficient represents the equilibrium
average over the total energyE and total angular momentumJ,
recovering thetmin(J) at which the integrated density achieves
a minimum at a givenJ from k∞(T) seems implausible if not
downright impossible.

Rigorous Monte-Carlo calculation7,8 of the variational mi-
crocanonical transition state theory rate coefficients is compli-
cated. It is computationally expensive and requires the knowl-
edge of many parameters pertinent to the potential energy
surface but not any knowledge of the limiting high-pressure
rate coefficient. Forst9 has proposed a variational theory
wherein a simple interpolation strategy, which switches between
the reactant and product frequencies as a function of the reaction
coordinate, is used. His method is computationally undemand-
ing but does require the knowledge of the limiting high-pressure
rate coefficient to adjust his switching function.

In conclusion the inverse Laplace transform method of
calculating microcanonical transition state theory rate coef-
ficients proposed here should be used for cases where it is
legitimate to locate the position of the transition state at the
centrifugal maximum of the effective interfragment potential.
It requires the knowledge of the limiting high-pressure rate
coefficient and does not embed any adjustable parameters.

2.7. Summary of the Underlying Assumptions. We now
recapitulate the assumptions invoked in the derivation of the
inverse Laplace method described here.

It has been assumed throughout that the limiting high-pressure
rate coefficient is known exactly. In reality, there will exist
systematic experimental errors in these measured coefficients.
Furthermore, they are usually measured accurately only over
selected temperature ranges and this can introduce an artificial
skewness; notable exceptions include the reactions of methyl
isocyanide, ethyl isocyanide, cyclopropane, cyclobutane, hy-
drazine, nitrous oxide, and carbon dioxide for which compre-
hensive measurements are available.15 This artifical skewness
of data, when it occurs, is the major source of objections to the
inverse Laplace method. However, the objection in fact applies
to all methods drawing information fromk∞(T); such as those
that guess the frequencies and degeneracies of the transition
state fromk∞(T). In section 5 below, we propose a method of
reducing the error from this source. A second source of error
will be due to the finite truncation of the Laguerre series in eq
2.24. Equation 2.24 is an exact equality whenM f ∞. One
can prove32 that the coefficients of the Laguerre expansion of
a smooth function, such ask̃∞(s), decay faster than algebraically.

lim
E f E0

k(E,0) ) 1
hN(E0)

(2.42)

lim
E f E0

k(E,0) ) â0

N(E0 - E∞)

N(E0)
+ O(kBT) (2.43)

hâ0N(E0 - E∞) ) 1 (2.44)

G*(E - E0(tmin)) ) h
R

L-1{k∞(s)Q(s)

f∞
var(s) } (2.45)

f∞
var(T) ) 1

Qvar
rot(T)

∫0

∞
(2J + 1) exp(-

φ(J)|tmin(J)

kBT )dJ (2.46)
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Based on a steepest descent analysis it can be shown32,33 that
the truncation error in eq 2.24 is given by the following
asymptotic order of magnitude relationship

whereM is the total number of retained basis functions in the
Laguerre expansion. In our calculations, it was found that a
choice of M ) 10 was sufficient to obtain negligibly small
truncation errors. For a critical appraisal of the convergence
properties of Laguerre spectral expansions, the reader is referred
to ref 32.

(i) Rotations may be treated semiclassically and that overall
rotations can be decoupled from the total energyE. This
assumption will be invalid for very low temperatures.

(ii) In the treatment of the intramolecular energy transfer,
simplifications inherent in the quasidiatomic model of energized
complexes may be relied upon; the analysis can be extended to
include the effect of asymmetric rotors.34

(iii) The microcanonical rate coefficientsk(E,J) may be
modeled using microcanonical transition state theory. This is
a safe assumption provided the barrier heights for the reaction
are higher than a certain low threshold limit.

(iv) The integrated density of the transition state may be
obtained from a smooth radial basis approximant. The inte-
grated density is a monotonically increasing function but is best
described as a linear combination of Heaviside functions. The
radial basis approximant will provide very accurate approxima-
tions to the integrated density provided the number of centers
for the radial bases is taken to be suitably large.

3. A Pathology in Using van’t Hoff’s Modification of
Arrhenius’ Form

Non-Arrhenius forms for the limiting high-pressure rate
coefficient have been considered before for the generation of
microcanonical rate coefficients by the use of the inverse
Laplace transform procedure. In particular, Pritchard15 and Forst
and Turrell35 have investigated the forms

with n > 0, and

with λ > 0. However these forms do not allow for nonmono-
tonicity in the limiting high-pressure rate coefficient. An
approach36 might be to use the modification ofVan’t Hoff to
Arrhenius’ form,

with n > 0 andR > 0. This form allows for decay at high
temperatures while exhibiting increasing behavior at low
temperatures. For simplicity of exposition, we neglect the
centrifugal factor in eq 2.16

and upon substituting eq 3.3 we obtain

Hereu(E′ - E∞) is the Heaviside function andJn-1 is the Bessel
function of continuous ordern - 1 and is given by37

Equation 3.6 is valid forE′ g E∞. As for the case of the
evaluation of the centrifugal factor, equation 3.6 is easily and
accurately evaluated by quadrature.23,24

One may note that the integrand of the first integral in the
right-hand side of eq 3.6 is an oscillatory function ofE′ - E∞.
In particular for large values ofE′ - E∞, k(E,0), as given by eq
3.5 will not only exhibit negative curvature but will also assume
rapidly oscillating negative values, becauseT andE are Laplace
transform pairs and it is necessary that

holds. The pathological behavior in using the modified Arrhe-
nius formalism arises because in the high-temperature limit the
k∞(T) given by eq 3.3 asymptotes to zero, when in fact it should
approach infinity or asymptote to a finitely large value. Such
pathology does not arise in our generic Laguerre representation
given by eq 2.24.

4. A Comparison of the Inverse Laplace and RRKM Rate
Coefficients

In this section we present the comparison of the micro-
canonical rate coefficients obtained from the inverse Laplace
and RRKM methodologies for two well studied reactions; the
RRKM methodology requires explicit knowledge of the fre-
quencies and degeneracies of the transition state while the
inverse Laplace methodology does not. Our paramount objec-
tive is to compare the microcanonical rate coefficients obtained
from these methods rather than elucidating the chemical
dynamics of the reactions considered. Accordingly, the calcula-
tions have been performed at selected temperatures for each
system. Defining the relative error between the inverse Laplace
and the RRKM microcanonical rate coefficient as

the results are presented here for specific total angular momenta
J with respect to two norms. The first is the infinity normêL∞(J)
which we define as

and represents the maximum deviation, over the total energy

truncation error≈ 0 (aM-1) (2.47)

k∞(T) ) A∞Tn exp(-
E∞

kBT) (3.1)

k∞(T) ) A∞ exp(λT) exp(-
E∞

kBT) (3.2)

k∞(T) ) A∞Tn exp(-RT) exp(-
E∞

kBT) (3.3)

k(E,0)N(E) ) L-1{k∞(s)} X L-1{Q(s)} (3.4)

k(E,0)N(E) )
A∞

kB
n∫0

E(E′ - E∞

R/kB
)n-1/2

Jn-1(2xR
kB

(E′ - E∞))u(E′ - E∞)N(E - E′)dE′ (3.5)

Jn-1(2xR
kB

(E′ - E∞)) )

1
π∫0

π
cos[(n - 1)θ - 2xR

kB
(E′ - E∞) sin θ]dθ -

sin[(n - 1)π]
π ∫0

∞
exp[- (n - 1)θ -

2xR
kB

(E′ - E∞)sinhθ]dθ (3.6)

lim
Tf∞

k∞(T) ) lim
Ef∞

k(E,0) (3.7)

R(E,J) ) 1 -
k(E,J)|Laplace

k(E,J)|RRKM

(4.1)

êL∞
(J) ) [|R(E,J)|]maximum (4.2)
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E, of the inverse-Laplace microcanonical rate coefficient from
the RRKM microcanonical rate coefficient relative to the latter.
The second is the Euclidean normêL2(J) which we define as

and represents the averaged Euclidean norm of the deviation
of the inverse Laplace microcanonical rate coefficient from the
RRKM microcanonical rate coefficient relative to the latter over
the total energyE. Additionally, the relative errorsR(E,J) are
graphically displayed for chosen fixed total energies and fixed
total angular momenta.

4.1. The Decomposition of the Ethyl Radical. The
â-scission of the ethyl radical

is a well-studied reaction. Estimates of the transition state
parameters are available from an ab initio calculation38 which
shows good agreement with experimental data.39 Recently, Feng
and co-workers40 have studied the weak-collision effects in this
reaction in a helium bath. We have chosen the transition state
frequencies and degeneracies, rotational constants, and the
limiting high-pressure data from their study. The limiting high-
pressure Arrhenius parametersA∞ andE∞ were obtained as a
function of temperature for the range 200-1100 K. These were
then used to generate the limiting high-pressure rate coefficient
over a dense set of points covering the said temperature range.
The ratio of the limiting high-pressure rate coefficient to the
centrifugal factor was computed at each of these points and was
fitted to a Laguerre expansion of the form given by equation
2.24. TheE∞ in eq 2.24 is taken to be the best fit forE∞ over
the temperature range 200-1100 K. The inverse Laplace
microcanonical rate coefficients were generated separately for
Laguerre expansions with 10, 15, and 20 terms; in carrying out
the inversions, the Laguerre expansions were inverted over the
entire temperature range [0,∞). The microcanonical RRKM
rate coefficients were generated using Gilbert’s UNIMOL
code.10 The methods for computing the density of states and
the energy spacings were taken to be identical in both of these

calculations. Table 1 displays the relative errors in the inverse
Laplace coefficients with respect to the RRKM coefficients for
Laguerre expansions with certain specific number of terms and
Figure 1 depicts the same errors for certain fixed total energies
and certain fixed total angular momenta. The equidistant energy
spacing taken in these calculations was 0.1 kcal/mol. All of
the plots display the results for the case of the ten-term Laguerre
expansion. It can be seen that the relative errors with respect
to the infinity- and Euclidean-norms are so small that the
microcanonical rate coefficients delivered by these two methods
are virtually identical over the entire range of total angular
momentaJ ∈ [0, 200] and the entire range of total energy E∈
[0, 200] Kcal/Mole. Additional comparisons and a full com-
pendium of results for this reaction are available in [17].

4.2. Isomerization of Methyl Isocyanide. The isomeriza-
tion of methyl isocyanide

has proven to be of great importance1,3,15 in the development
of unimolecular reaction rate theories. In 1987, Roenigk and
co-workers41 theoretically estimated the high-pressure param-
eters for this reaction by non-linear regression of RRKM
predictions on published experimental data.42,43 We performed
inverse-Laplace and RRKM calculations based on the limiting
high-pressure and transition state parameters described in their
work. The ratio of the limiting high-pressure rate coefficient
to the centrifugal factor was computed over a densely spaced
temperature grid of the range 400-600 K. This was then fitted
to a Laguerre representation of the form eq 2.24 withE∞ taken
to be the mean of the values recommended in ref 41. The
inverse Laplace microcanonical rate coefficients were generated
separately for Laguerre expansions with 10, 15, and 20 terms;
in carrying out the inversions, the Laguerre expansions were
inverted over the entire temperature range [0,∞). The micro-
canonical RRKM rate coefficients were generated using Gil-
bert’s UNIMOL code10 with identical manner of computations
of the density of states. Table 2 displays the relative errors in
the inverse Laplace coefficients with respect to the RRKM
coefficients for Laguerre expansions with certain specific
number of terms and Figure 2 depicts the same errors for
certain fixed total energies and certain fixed total angular

TABLE 1: Comparison of the Inverse Laplace and RRKM Microcanonical Rate Coefficients for the Decomposition of the
Ethyl Radical for 10- and 15-Term Laguerre Expansion

total angular
momentum

êL∞
(J) ) [|1 -

k(E,J)|Laplace

k(E,J)|RRKM
|]

maximum

êL2
(J) ) [∫E(1 -

k(E,J)|Laplace

k(E,J)|RRKM
)2

dE

∫E
dE ]1/2

(a) 10 Term
0 3.4e-05 1.2e-05

20 4.1e-06 1.0e-06
40 3.7e-06 1.6e-06
60 3.3e-06 1.6e-06
80 3.3e-06 1.4e-06

100 1.9e-07 1.1e-07
200 2.3e-08 1.7e-08

(b) 15 Term
0 1.0e-6 1.0e-06

20 7.3e-07 1.7e-07
40 6.3e-07 1.7e-07
60 9.8e-08 9.2e-08
80 7.0e-08 6.5e-08

100 3.2e-08 2.3e-08
200 2.6e-08 2.1e-08

êL2
(J) ) [∫E

R(E,J)2 dE

∫E
dE ]1/2

(4.3)

C2H5 f C2H4 + H (4.4) CH3NC T CH3CN (4.5)
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momenta. The equidistant energy spacing taken in these
calculations was 0.1 kcal/mol. All of the plots display the
results for the case of 10-term Laguerre expansion. As for the
case of the decomposition of the ethyl radical, the relative errors
with respect to the infinity and Euclidean norms are so small
that the microcanonical rate coeffients delivered by these two
methods are virtually identical over the entire range of total
angular momentaJ ∈ [0, 200] Kcal/mol. As with the case of
the decomposition of the ethyl radical, additional comparisons
and conspectus of results for this reaction are available in ref
17.

The full data set for each of the aforementioned examples
and the computer programs for the computation of the micro-
canonical rate coefficients from thermal data are available from
the authors.

5. Coping with a Finite Temperature Range

A criticism leveled on the inverse Laplace methodology for
deriving microcanonical rate coefficients has been that the
limiting high-pressure rate coefficient is experimentally measur-
able only over a finite range of temperature while the Laplace
transform is taken over the semiinfinite temperature range [0,∞).
Such criticism is equally applicable to using the RRKM
formalism for computing microcanonical rate coefficients when
the transition state frequencies and degeneracies are obtained
via regression from identities relating them to the limiting high-
pressure rate coefficient. For small molecules, the transition
state frequencies for gas phase dissociation reactions can be
accurately computed using ab initio methods; for such molecules
RRKM is the method of choice. In general, for larger
molecules, there will be errors in the frequencies computed by
ab initio methods which will be tightly correlated with the
computed barrier heights and it is a well-known fact that ab
initio estimates of the barrier heights of gas phase dissociation
reactions are often overestimates.

It has been argued44,45 that while experimental values of the
limiting high-pressure rate coefficient for gas phase dissociation
reactions cannot in general be determined accurately over a wide
temperature range, precise experimental techniques are available
for measuring rate constants for gas phase recombination
reactions and that the limiting high-pressure rate coefficients

for such reactions are only weak functions of temperature thus
allowing experimental measurements over a wide range of
temperature. Hence, in computing theE and J dependent
microcanonical rate coefficients for gas phase dissociation
reactions via the method described in this paper, the employment
of the experimental limiting high-pressure rate coefficients of
the associated recombination reaction through the relation with
the equilibrium constant will result in more accurate micro-
canonical rate coefficients for the dissociation process than with
those obtained from the knowledge of the limiting high-pressure
dissociation rate coefficients.

Superb agreement between the inverse Laplace and the
RRKM microcanonical rate coefficients has been obtained here
for the two cases studied because of the excellent correlation
between the transition state parameters and the best available
thermal data for each of these cases; in the case studied, the
best available thermal data are really very good representations
of the exact thermal data and the Laguerre approximants
accurately capture the asymptotic behavior of the thermal data
at the boundaries of zero and infinite temperature. The method
proposed herein is an excellent technique to deduce micro-
canonical coefficients.But, great progress in the utility of the
inVerse Laplace method as an instrument for modeling uni-
molecular reactions cannot be made unless the issue of coping
with a finitie temperature range is addressed in a rigorously
mathemical fashion.The mathematical problem is one of
simultaneous interpolation, extrapolation, and approximation of
a univariate function over semi-infinite support. The full
analytical features of this function over a semi-infinite support
need to be estimated from those of another function over a finite
support. The tools of the mathematical theory of sampling of
functions46,47which have been maturely developed in the fields
of information and communications theories are perhaps best
suited for such a purpose and may form the starting point for
further research in this area.

6. Conclusions

In this paper we have proposed an extension of the inverse
Laplace methodology originally developed by Forst in the late
sixties and early seventies. The original formalism treated
rotations by assuming a temperature-independent centrifugal

TABLE 2: Comparison of the Inverse Laplace and RRKM Microcanonical Rate Coefficients for the Isomerization of the
Methyl Isocyanide for 10- and 15-Term Laguerre Expansion

total angular
momentum

êL∞
(J) ) [|1 -

k(E,J)|Laplace

k(E,J)|RRKM
|]

maximum

êL2
(J) ) [∫E(1 -

k(E,J)|Laplace

k(E,J)|RRKM
)2

dE

∫E
dE ]1/2

(a) 10 Term
0 2.4e-06 2.2e-06

20 2.5e-06 2.2e-06
40 1.04e-06 1.0e-06
60 1.04e-06 1.1e-06
80 8.1e-07 8.0e-07

100 3.0e-07 2.6e-07
200 1.12e-07 1.09e-07

(b) 15 Term
0 2.2e-6 2.1e-06

20 9.3e-07 8.9e-07
40 8.2e-07 7.6e-07
60 7.4e-07 7.3e-07
80 4.9e-07 3.4e-07

100 1.07e-07 9.7e-08
200 1.07e-07 9.9e-08
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factor. The limiting high-pressure rate coefficient was assumed
to be of Arrhenius or monotonic non-Arrhenius forms. This
gave rise to certain limitations15 in the method as discussed in
sections 1 and 3. Our principal contribution here has been to
provide a more general framework for the inverse Laplace
methodology. A spectral Laguerre expansion is used to
accurately approximate the ratio of any arbitrary limiting high-
pressure rate coefficient to a temperature-dependent centrifugal
factor. Assuming separability from the total energy, overall
rotations are treated explicitly within the boundaries of the
semiclassical approximation. We have shown that the micro-
canonical transition state theory rate coefficients derived from

our method, which obviates the need to know the frequencies
and degeneracies of the transition state, are identical to those
obtained from direct RRKM calculations which require explicit
knowledge of such frequencies and degeneracies. This has been
demonstrated on the unimolecular decomposition of the ethyl
radical and the isomerization of methyl isocyanide. The
advantage of our method is that it possesses no adjustable
parameters and requires only the knowledge of the limiting high-
pressure rate coefficient and rotational constants. It does not
require the frequencies and degeneracies of the transition state.
The position of the transition state is located at the centrifugal
maximum of the effective interfragment potential. The method,

Figure 1. (a) Decomposition of the ethyl radical. Comparison of the
inverse laplace and RRKM microcanonical rate coefficients forJ )
60. (b) Decomposition of the ethyl radical. Comparison of the inverse
Laplace and RRKM microcanonical rate coefficients forE - EJ ) 75
kCal/mol.

Figure 2. (a) Isomerization of methyl isocyanide. Comparison of the
inverse Laplace and RRKM microcanonical rate coefficients forJ )
60. (b) Isomerization of methyl isocyanide. Comparison of the inverse
Laplace and RRKM microcanonical rate coefficients forE - EJ ) 75
kCal/mol.
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of course, requires knowledge of thermal data over a reliably
wide temperature range.

As is well recognized, there are substantial difficulties
associated in calculating the microcanonical transition state
theory rate coefficients for reactions without a chemical barrier
where it is necessary to locate the position of the transition state
at the variational minimum of the cumulative reaction prob-
ability along the reaction coordinate. Unfortunately, this
variational calculation cannot be performed with the knowledge
of the thermally averaged limiting high-pressure rate coefficient
〈k(E,J)〉equilibrium alone. In order to extend the inverse Laplace
formalism to obtain variational microcanonical coefficients
without the knowledge of the frequencies and degeneracies of
the transition state, it is necessary, at the very least, to know
from experiment or otherwise the vlue ofk∞(T,J), the limiting
high-pressure rate coefficient as a function of temperature,T,
and the total angular momentumJ, for eachJ. Since this is
not practicable, it appears that the inverse Laplace formalism
is limited for reactions possessing no chemical barrier.

In conclusion, the inverse Laplace formalism presented here
should be viewed as an alternative means of obtaining micro-
canonical transition state theory rate coefficients for certain
classes of elementary unimolecular or bimolecular reactionsfor
which high-pressure experimental data are aVailable oVer a
reliably wide temperature range. In particular the method could
prove to be a useful means of obtaining such microcanonical
rate coefficients for multiple-well reactions where data for the
isomerization transition states’ frequencies and degeneracies are
scarce and not well-known.
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