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On the basis of concepts from the mathematical theory of approximation of functions, we propose a method
of deriving microcanonical transition state theory rate coefficients, both as a function of the total energy and
the total angular momentum, from thermal data, namely, the limiting high-pressure rate coefficients. The
method does not require the knowledge of the frequencies and degeneracies of the transition state and is
general in that it allows for non-Arrhenius forms of thermal data, but it only applies to reactions possessing
an intrinsic energy barrier. It is shown that the derived microcanonical rate coefficient is almost identical to
the computed RiceRamspergerKasset-Marcus (RRKM) microcanonical rate coefficient using explicit
frequencies and degeneracies of the transition state, and furthermore, that the difference between the two is
uniformly distributed over the entire range of total energy and the entire range of the total angular momentum.
Comparison of the microcanonical coefficients from the proposed method with those from a standard
nonvariational RRKM calculation is presented for the unimolecular decomposition of the ethyl radical and
the unimolecular isomerization of methyl isocyanide. The agreement is shown to be excellent. A theoretical
analysis of the fine structure of the microcanonical rate coefficient near the threshold of the reaction is
enunicated and the difficulty of extending the method to obtain variational microcanonical rate coefficients

is described. We also, briefly, speculate on the possible merits of certain theoretical methods of analysis for
coping with the representation of thermal data, whose argument is the temperature which is of semiinfinite
range.

1. Introduction perform a variational analysis® Furthermore, not only is the

. computation of activation barriers from ab initio methods
The Rice-RamspergerKasset-Marcus (RRKM) method, possible for simple reactions alone, and that too with only

a version of microcanonical transition state theory, derived as yqqerate accuracy, but careful examination of the potential
an approximate statistical theory for generating microscopic rate energy surface is required for systems exhibiting large tunneling
coefficients and promulgatécas a predictive tool for uni- effects or other dynamical characteristics.

molecular and bimolecular kinetics, is now commonly used by \yithout abandoning the concept of the transition state
chemical kineticiststo estimate the absolute temperature- and propose here a method of generating the microcanonical rate
pressure-dependent rate constants of elementary diSSOCiationcoeﬁicientk(E,J) for the dissociation of a molecule, whefds
radical recombination, ionmolecule, and chemically-activated 4 energy of the molecule adds the total angular momentum
reactions. Its exercise requires knowledge of the transition- quantum number, solely from the knowledge of the limiting
state properties, in particular the barrier heights for dissociation, high-pressure rate coefficient, which may be obtained from
degeneracies, frequencies, rotational constants, separation ofynerimental observations augmented by extrapolation, and the
fragments, equilibrium bond lengths, and the interfragment ;nerfragment parameters of the transition state. Our method
potential parameters. The estimation of such properties of the yoeg not require the knowledge of the transition state frequencies
transition state is nontrivial and is made from a combination of 5.4 degeneracies. These are implicit in the knowledge of the
heuristics; ab initio calculations, and highly state-resolved |ijting high-pressure rate coefficient, because one can always
experiments near the threshold of reacioBuch esimation is compute the limiting high-pressure rate coefficient from el-
not always practicable for large molecules due to the compu- gmentary transition state thermodynamics given the transition
tational complexity of quantum-dynamics calculations and for giate frequencies and degeneracies. The microcanonical rate

reactions which possess no intrinsic barrier. Reactions without coefficient k(E,J) is given in microcanonical transition state
an intrinsic barrier are those which have no barrier in the theory by

exoergic direction and whose barrier equals the endoergicity
of the reverse diection; for such reactions it is necessary to oG*(E — E,)

k(E,J) = T(E) (1.1)

T Department of Chemical Engineering and Materials Science.

* Corporate Research Science Laboratories. . . .
s Current Address: Schlumberger-Doll Research, Old Quarry Road, Here G*(E — Ey) is the integrated density of states for the

Ridgefield, CT 06877. transition state withg; being the effective critical energy for

S1089-5639(98)01344-9 CCC: $15.00 © 1998 American Chemical Society
Published on Web 09/29/1998



Inverse Laplace Transformation

the dissociation. The effects duedare subsumed i&;. N(E)
is the density of states of all of the chemically active modes of
the dissocating molecule at the safe The chemically active
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the microcanonical transition state theory rate coefficient is
identical with this RRK expression (eq 1.3). Two principal
objections have been raised in connection with the expression

modes encompass all vibrational and internal rotational modes1.3: (a) Equation 1.3 breaks down if the limiting high-pressure

and for nonlinear molecules their relevant one- and two-
dimensional external rotational degrees of freedoms the
reaction path degenerachis Planck’s constant. Our method

rate coefficient does not follow a strict Arrhenius rate law.
Objective arguments against this objection have been raised by
Pritchard; see page 39 of ref 15. (b) When tunneling phenomena

obviates the need to know the transition state frequencies andoccur, the first reactive state may occur at an energy substantially
degeneracies for the computation of the accessible quantumbelow E... Equation 1.3 will then be invalid, particularly for
states of the transition state. This is achieved by the use of anweak collision systems near their low-pressure limit.

inverse Laplace transformation to estimate the microcanonical
rate coefficientk(E,0) from the equilibrium average &{E,J).
During the course of our calculation kfE,0) we explicitly take

into account Forst's centrifugal correction factorvhich
represents averages over the angular momenta. Then, makin

the observation that the number of accessible quantum states is

a univariate function in the total energy, the knowledgk(Ef0)

and the density of states of the chemically active mdd@

of the molecule yields the microcanonical rate coefficldJ)

for any specifiedE andJ by means of a simple interpolation
technique. The only transition-state properties required in our

prescription are the rotational constants such as the moments

of inertia and the interfragment potential. These particular

transition state properties are easier to estimate than the

frequencies and degeneracies of the transition state.
position of the transition state is located at the centrifugal
maximum of the effective interfragment potential. We make
the semiclassical approximation in summing over the total
angular momentum quantum numbers. Within the limitations
of this approximation, the microcanonical rate coefficients thus
generated by our method show excellent agreement with thos
obtained from methods of generating nonvariational RRKM rate
coefficientd® which require explicit knowledge of the frequen-
cies and degeneracies of the transition state in their concomitan
calculations.

The use of inverse Laplace transforms in unimolecular
reaction-rate theory is very well documented. Originally
proposed by Bauét and Slate¥? and later introducée as a
means of obtaining the density of states from the knowledge of

the partition function, it has been suggested as an alternative

means of evaluating the microcanonical rate coefficient without
any knowledge of the transition state properti€g® In such
treatments, rotational effects are treated simply by setting the
angular momentum to zero. When a strict Arrhenius form for
the limiting high-pressure rate coefficiekt(T) is presumed,

k(T) = Ae =T

wherekg is the Boltzmann constant aridis the temperature,
one obtains for the microcanonical rate coefficikgtx(E),

N(E - E,)
N(E)

(1.2)

krri(E) = A, (1.3)

whereA., is the preexponential factor independent of temper-
ature andE. is the high-pressure activation energy in the
Arrhenius expression for the limiting high-pressure rate coef-
ficient. N(E) is the density of states for all internal degrees of

freedom and vanishes for &l < 0. Equation 1.3 implies that
only modes withE > E, are chemically active.krrk(E)

The

e

In our inverse Laplace transform method for generating the
microcanonical rate coefficients, we represent the limiting high-
pressure coefficient as

g

k() = A,(T) e =T (1.4)

whereA«(T) is a function of temperature and can be nonmono-
tonic. We express.(T)

_kM_AM
FORRAG

Ko(T)

kBT) (1.5)
wheref(T) is a centrifugal factot,as a finite sum of Laguerre
basis function® in temperature. An advantage of such a
representation is that any arbitrary nonArrhenius form for the
limiting high-pressure rate coefficient can be approximated
accurately. The Laguerre basis set is orthonormal and complete
over [0,»]. They are eigenfunctions of the Sturrhiouville
operator and, indeed, form the optimal b&&fer any function
over the semi-infinite interval [G2]. In addition, equation 1.5

is analytic over the entire complex plane apart from poles, and
hence, it is amenable to the application of the Laplace transform.
R/Ve have thus surmounted criticism (a) of the previous para-
graph. Itis instructive to note that when the centrifugal factor
is unity andA«(T) is independent of temperature we recover
the RRK result of equation 1.3.

In general, tunneling makes only a minor contribution to the
microcanonical rate coefficient. When the effects of tunneling
are important, the rate law for the limiting high-pressure rate
coefficient will be pronounced non-Arrhenius at low tempera-
tures. Under such circumstances, we expect our Laguerre-
function representation of eq 1.4 to approximate the rate law
well, as they form an optimal basis set for approximating any
arbitrary temperature dependence of the rate coefficient. We
have thus also surmounted criticism (b).

Thus we propose in this paper a method, founded on the
knowledge of the experimentally obsedl limiting high-pressure
rate coefficient, for generating microcanonical transition state
theory rate coefficients from a set of minimal transition state
parameters which are easily estimate@ur method does not
neglect any of the rotational degrees of freedom and is exact
for all temperatures above which the semiclassical approxima-
tion holds true. We expect our method to be very useful for
multiple-well systems where knowledge of the frequencies and
degeneracies of isomerization transition states is not easily
obtainable.

The remainder of the paper is organized as follows. Section
2 provides a complete description of our inverse Laplace

represents the microcanonical rate coefficient generated by thetransform method. We describe the interpolation strategy to

Rice—RamspergerKassel (RRK) theory; apart frorf., no

transition state properties are required. As is well-known, in a
classical mechanical treatment with harmonic oscillators and
with the total angular-momentum quantum number set to zero,

obtain the integrated density of states of the transition state and
the consequent derivation of the microcanonical transition state
theory rate coefficient. All of this is illustrated within the

context of the Laguerre basis representation of the ratio of the
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limiting high-pressure rate coefficient to the centrifugal factor. from eqs 2.1 and 2.2 that

Limitation of the method for situations where variational

microcanonical rate coefficients are desired is described. Sec-|_*1{ f“’f“’(zj + 1)N(E)K(E,J)

tion 3 describes a pathological behavior of the inverse Laplace 06

rate coefficients when a modified Arrhenius form is used to  exp—S(E + E,(J)))dE dJ} = Lk (9)Q(9Q,(9} (2.3)
represent the limiting high-pressure rate coefficient. The

microscopic rate coefficients exhibit negative curvature at large whereL™Y{ } is the inverse Laplace transform operator with
energies due to a mathematical artifact of a modified Arrhenius respect to the variablg and the parametexis given by
formalism. Section 4 compares the microcanonical rate coef-

ficients generated by our method for two reactions. The first s=—— (2.4)

is the unimolecular decomposition of the ethyl radical. The ke T

computations for this reaction, from our nonvariational inverse ] o . )

Laplace scheme, are compared with those from Gilberts RRKM From the FourierMellin integration theorem? equation 2.3
codé®which requires explicit knowledge of the transition state  May be written down as

frequencies and degeneracies. This is done for a range of

angular momentum quantum numbers. We show that excellentf; (2J+ 1)N(E — E(9)k(E — E(J3),J)dI =

agreement is obtained. The second reaction is the isomerization 1
of methyl isocyanide. The computations for this reaction, i K.(8)Q()Qro(S) eXxpEB)ds (2.5)
performed over a wide range of angular momentum quantum

numbers, from our nonvariational inverse Laplace scheme arewherec is the abscissa of integration in the complex plane.

compared with those from Gilbert's RRKM code. We show  Ajthough the right-hand side of eq 2.5 can be evaluated upon
that, once again, excellent agreement is obtained. The inversehe provision of the limiting high-pressure rate coefficient, the
Laplace microcanonical rate coefficients reproduce the fine jntegrand on the left-hand side cannot be deconvoluted to obtain
structure of the microcanonical transition state theory rate the microcanonical rate coefficiek¢E,J) explicitly. It is thus
coefficients. Section 5 discusses the implications of Coping with necessary to postu|ate a model for the microcanonical rate
the knowledge of the limiting high pressure coefficient obtained cqefficient.

from experimental measurements over a finite temperature 2 1. A Model for k(E,J): Microcanonical Transition State
range. Section 6 describes our conclusions. Throughout thiSTheory. The microcanonical rate coefficient is given in general

Ctico

Cc—ico

paper we adhere to the notations set forth by Forst. by
2. The Inverse Laplace Transform Method T'(E,J
ce Transiorm ! .. KEY =) 2.6)
Under the assumption holding at high pressures that collisions hN(E)

are much more rapid than chemical reaction, the reacting system ) ) ] N

can be represented by the Gibbsian canonical ensemble wherei¥/here I'(E,J) is the cumulative reaction probability at total
an equilibrium population of the molecules is maintained over €nergyE and total angular momentud In the framework of
all energies and angular momenta. Thus the limiting high- transition state theory, the cumulative reaction probability is

pressure rate coefficient may be interpreted as the average oftPProximated by the product of the reaction-path degeneracy

the microcanonical rate coefficient over the MaxweBoltz- and the number of accessible quantum st&¥& — E) for
mann distribution, the modes orthogonal to the reaction coordinate and thus the
microcanonical transition state theory rate coefficient is given
00 " by
ko(T) = K(E,J) Qqunibrium = z‘/(; k(Er‘])P(E"])equilibriude aGHE — E)
- 2.1 KEJ) =—— > 2.7
(2.2) €)=—1ND (2.7)

P(E.J)equilibrium IS the equilibrium probability density function o ) ) ) o
for a specificE andJ. It has been pointed out by Forshat at The statistically important modes making effective contributions
the high-pressure limit, within the context of a steady state t0 the reactive flux are the transitional modes and the number
analysis, the averaged microcanonical rate coefficient is identical ©f accessible quantum states is evaluated at the position of the
2.1. Making the assumptions that rotations may be treated the total energy, total angular momentum, and the structure of
semiclassically and that the overall rotations are completely the interfragment potential, and it may be located at the
decoupled fronE, i.e., the moments of inertia are independent centrifugal maximum of the effective interfragment potential.

of E, the averaged microcanonical rate coefficient may be This is a simple and nonvariational calculation. Under these
expressed as circumstances we may write

© o E,=E,— EQ) + ¢ 2.8
(K(E.J) quitiorium = m Jo J& @+ INEKED) =R D F40) @9
rot whereg(J) is the maximum value of the effective interfragment
ex;{— E+ Er(J))dEd J (2.2) potential. Description of forms of the interfragment potentials
KsT ' is to be found in ref 1 and a recapitulation in ref 17.
For reactions without a chemical barrier, such as radical
HereQ(T) is the partition function for the pertinent degrees of recombinations and iermolecule associations or their reverse
freedom involved in the density of statB§E). Qu(T) is the counterparts, it has been demonstrat@that it is necessary to
partition function for the two-dimensional rotor of enerigyJ). perform a variational calculation to locate the position of the
All other symbols retain their previous meanings. It follows transition state at the local minimum &*(E — E4(t)), the
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number of accessible quantum states of the transition state alongHere® is the Faltung operatdf. Equation 2.16 is exact and is

the reaction coordinate, easily evaluated upon the provision of a functional form for
k-(S), the limiting high-pressure rate coefficient and the

QG*(E —Et)=0 (2.9) centrifugal factorig,(s), sinceL*l{_ Q(9)} is simply N(E) itself.

dt 2.2.1. Computing the Centrifugal FactorEquation 2.16

. . . . could have been written down explicitly as
wheret is the distance along the reaction coordinate. The rest PHCTy

of the presentation of the concepts underlying our inverse 1 - 1 1
Laplacepformalism will be based or? the nonvgrigtional micro- KEONE) =L {ky(9} ®L H{Q(S} ®L {@} (2.17)
canonical transition state theory. Finally in Section 2.6 the ”
difficulties in adapting the inverse Laplace formalism for the Even though all of the individual terms in the convolution (eq
estimation of variational microcanonical rate coefficient will 2.17) possess inverse Laplace transforms, in general, explicit
be discussed. analytical forms exist only for ~{ Q(s)}. The coefficienk.(s)

2.2. Computation ofk(E,0). Upon substituting the transition  is an arbitrary function of temperature, and hence, its inverse
state theory expression for the microcanonical rate coefficient Laplace transform can be evaluated only numerically}{ 1/

into equation 2.2, the following relationship f=(S)} can also be evaluated only via numerical means or by
the method of steepest descéttsy computing the location of
K(E,J) quiibrium = Ko(T) = a saddle point. The method of steepest descents, although
o 0 (00 e widely used, is not necessarily the method of utmost accufagy.
hQ(T)Qrot(T)J; fEJ (2 +1)G(E-Ey Numerical evaluation of contour integrals, such as in eq 2.5, is

cumbersome. Among the numerical inversion methods, the
E+ E(J) . . . :
exp — ————|dEdJ (2.10) Stehfest algorithd? requires only a few function evaluations
ke T along the real axis and its convergence is therefore rapid
) . although the test for the convergence of this algorithm is not
results. Following Forst,the angular momentum portion of  straightforward. Alternatively, one may use the Dubner and
the integrand in eq 2.10 may be separated out by utilizing eq Abate method? its convergence properties, albeit not as

2.8, and a temperature-dependent centrifugal fadtd(), attractive as the Stehfest algorithm’s are easy to test and the
representing the average over the angular momenta, convergence itself may be accelerated using Pade’s approxi-
mants as set forth by Crunip.
f(T) = LL[:)(ZJ +1) ex;(— @)d\] (2.11) For reasons of accuracy, we compute numerically the ratio
QT keT
oo k(9 218
can be obtained. It is then observed that the averaged ka(8) = f.(s) (2.18)

microcanonical rate coefficient may be written as
and fit it to a Laguerre basis sum, the description of which
ER(E'J)@qunibriumz ko(T) = follows in the next section. Analytical forms for the inverse
fo(T) e E Laplace transform of Laguerre basis functions are readily written
Q(T)j; k(E,ON(E) exr{— @)dE (2.12) down. The evaluation of the ratio in eq 2.18 requires the
computation of the centrifugal factor

wherek(E,0) is identically zero wheie < Ep, and 1 o
f(s) = [ 23+ 1) expe-sp()dd  (2.19)
QG*( E — EO) Qrot(s)
KEQ)=—"""=— (2.13) iy . o _
hN(E) The partition functionQx«(s) is given by the integral

whenE > Eo. Now that the preliminaries are completed, our 9= (2] + 1) expl~ —E.+o(M)d] (2.20
next step is to obtaik(E,0) via the inverse Laplace transform Qo) ﬁ) ( ) expEs(B —E+ o)) (2.20)

of eq 2.12. It follows from 2.4, 2.12, and 2.13 that

Y A (G(E - B} —LKEON®)  214) Jo @3+ D exptspad 221

The next step is the computation of the integral

) ) This can be done analytically for some forms of the interfrag-
where I{ } is the Laplace transform with respect to the ment potential as shown in Fofstut in general, for other forms
parametes and the variabl&. The inverse Laplace transform  of the interfragment potential, it is done most effectively via

of eq 2.14 may be written down as the Gauss Chebyshev quadratiffeadapted for the semiinfinite
interval, [0, ] by the introduction of a scale parameterThe
K(E,O)N(E) = L_l[ kw](cS)(S)(S)} (2.15) guadrature formula is then given by
) [(23+ 1) expE-sp(@))dd ~
Each ofk.(s), Q(s), andf.(s) are individually inverse Laplace
transformable, and hence, using the convolution the¥réon a1
Laplace transforms we may write N [(Ji +L)(23, + 1) expEsp(J) (2.22)
&
Keo(S)

k(E,ON(E) = Ll[ } ® L’l{Q(s)} (2.16) Here the quadrature points are the roots of Nité order

f(S) Chebyshev polynomial inJ(— L)/(J + L). These quadrature
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points may be written down analyticadf/as
(1 + 005{(2i — 1) )
. N

A CEE|

The scale parametdr is empirically chosen, and its choice

should ensure that the absolute value of exgg#(In-1)) is which has been used on empirical grounds for the high-
negligible. This determines the number of quadrature points, temperature behaviour é(T). However, as we discussed in

N for the accurate transcription of the integral to a discrete sum. section 1, because of tunneling such behavior cannot be extended
For the various choices described in ref 1 and recapitulated into low temperatures for some systems despite the fact that it
ref 17,¢(J) decays rather rapidly. In our computations it was follows from simplified applications of transition state theory.

optimal approximating basis for a nonperiodic function-i|

1] the Laguerre basifLy(s™1)} is the optimal approximating
basig* for a general function which is defined over the support
[0, 0] and is dominated by the exponential weight function as
ksT — 0. The highest exponent &§T in eq 2.24 isM — 1.

lim A,(T) O (k)"

Jo,= (2.23)

(2.29)

found that a choice ol taken to be 250 gave rise to an

2.2.3. Final Analytical Expression for k(E,O)t is conve-

inaccuracy of no more than 0.02% in the quadrature sum. Thenient to reexpress eq 2.24 in the following form,

use of Gaussian points to approximate definite and improper

integrals is well-known in approximation theory, and little is
to be gained by repeating the details here. The reader will find
good expositions in treatises such as Chen#y'$he partition
function given by eq 2.20 may be similarly computed using
this quadrature.

2.2.2. The Laguerre Representatio@nce the centrifugal

factor is computed as prescribed in the previous section, the

next task is to approximate the rako(s) by a finite Laguerre
basis set,
M-1

ko9~ 5 B expE.9Ly(s )

n=

(2.24)

whereLn(s™) is the Laguerre polynomif of ordern. The
coefficients{B,; 0 < n < M — 1} are determined by a least-
squares fit to the numerically tabulated values of the ratio of
the limiting high-pressure rate coefficient to the centrifugal
factor. The integer parameteris chosen to provide as accurate

a representation as desired. This form possesses the propertif(E*O) =Po

that the ratiok..(S)/f«(s) is infinite when the temperature goes
to infinity becausd«(s) goes to unity (see eq 2.19) akd(s)
diverges. This property prevents pathological behavior in the
computed microcanonical rate coefficient which might otherwise
arise and will be the subject of discussion in section 3. The
Laguerre basis sét.(s™1)} is orthonormal in [Ogo) with respect

to the weight function exp{1/2s), and the Laguerre polynomials
are evaluated via the following recursion relations.

L(sH=1 (2.25)

L(shH=1-s" (2.26)

N+ DLy H=[@n+1) = sTL(s ) —nl,_y(s )
(2.27)

The Laguerre basis functions are straightforwardly Laplace

v expCsE)
(O~ 3 p——

n=

(2.30)

where the coefficient§f,; 0 < n < M — 1} possess a simple
linear algebraic relationship to the coefficiefi,; 0 < n< M
— 1}. Equation 2.16 may now be written down as

KEONE) = [ 0(E — E)By +
M-1(E' — E )" !

n=

— u(E — Ew)ﬁn] N(E — E')dE' (2.31)

Hered(E' — E.) is the Dirac delta function and(E' — E..) is
the Heaviside function. We may write eq 2.31 as

NE - E,)
_l’_
N(E)
Sy BT E - B oan
n;m " uE - E.) NE (2.32)

The first term on the right-hand side of eq 2.32 is the standard
RRK expression for the microcanonical rate coefficient. We
may now note from eq 2.13 that the integrated density of the
transition state may be written as

h
G(E-Ey)= o BoNE — E,)) +
M—1 E(Er _ Em)n_l
Zﬂn Jo ————Uu(E' — E,)NE — E)dE'| (2.33)
n= (n—1)!

It should be noted that in eq 2.& is not strictly identical to

transformablé@5 Noticing the correspondence between eqs 1.4 E= although kineticists usually estimagto be thek., obtained
and 2.24, what has been essentially done here is that the ratid@m high-pressure thermal experimental observations.

of the preexponential in the limiting high-pressure rate coef-

2.2.4. Comments on the Laguerre Representation: Uniform

ficient to the centrifugal factor has been approximated by a sum APProximation. We have approximated the ratio of the limiting

of Laguerre polynomials itkgT,

As(S)

~

f(s)

M-1
B,L,(s (2.28)

n=|

high-pressure rate coefficient to the centrifugal factor by a sum
of Laguerre basis functions; this set of basis functions can be
shown to be the optimal basis set for such an approximation
and minimizes approximation errors due to the classically well-
known Runge phenomenera characteristic of nonuniform
approximatior?* The inverse Laplace transform of the Laguerre

Just as the Fourier basis is the optimal approximating basis forsum is analytically written down and the microcanonical rate

a periodic function in +1, 1] and a Chebyshev basis is the

coefficient for zero angular momentum is then obtained.
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Schoenenberger and Fdfsthave considered the Gauss inversion such that eqs 2.36 and 2.37 hold. B =1, ...,
Laguerre discretization of the semiinfinite integral in eq 2.12 d (called the centers of the radial bases) are distinct and are the
and this is quite different from the method we have presented. points at whichk(E;,0) is obtained from the inverse Laplace
Their procedure amounts to a discrete Laplace transform overtransform procedure. It has been shown that systems such as
afinite range of the total energlf. They have shown that in  those described by eqs 2.36 and 2.37 will be nonsingular for
using such an inversion strategy to calculate the microcanonicalmany choice® of the radial basig(/IE — Eill), including the

rate coefficients, large errors can result with high oscillations thin-plate splines recommended by us. Thin-plate splines are
as a function of the total energy. They have also shown that given by

approximating the ratio of the limiting high-pressure rate

coefficient to the centrifugal factor by a sum of simple H(IE — Ell) =1IE — Ei||2|09||E— Ell (2.38)
polynomials ins and analytically inverting the resulting expres-

sion results in substantially lower errors for the calculated RgE approximants consisting of thin-plate splines may be
microcanonical rate coefﬁc_lent than that obtained from the ayajuated rapidly through a truncated Laurent-expansion tech-
Gauss-Laguerre discretization of the Laplace transform.  nigue2® The numerically stable and well-conditioned inversion
Approximation theory tells us that approximating the ratio of eqs 2.36 and 2.37 is best done by normalizing the norms
of the limiting high-pressure rate coefficient to the centrifugal gnto the interval £-1, 1] and by applying a sequence of Hotdse
factor by a sum of Laguerre basis functions, as we have done,no|der transformatiort8 to the resultant equations. Once the
is vastly superior to approximation by a sum of simple effective critical energy for the dissociatifi is computed, the
polynomial functions. The choice of a Laguerre basis serves jnterpolated integrated density of the transition state may be
to overcome tht=T Runge p_henomenon. This means Fh_at_theused to obtairk(E,J) from eq 2.7 for any total energg and
Laguerre approximant obtained via the least-squares minimiza-any nonzero angular momentum quantum numdber
tion will converge uniformly* to the function over the entire 2.4. Transition State. Our motive in this section is to show
interval of approximatiors [0, «) or equivalently T€[0, e), the relation between the frequencies and degeneracies of the
most importantly, this means that the errors in the micro- tansition-state and the inverse Laplace expression for the

canonical rate coefficients computed via the inverse Laplace jntegrated density. The RRKM expression for the integrated
methodology areniformly distributed oer the entire semifinite  gensity at zero angular momentum is given by

range [0, ), of the total energf. If one were to fit a function
to a sum of arbitrary polynomials or non-linear functions the
resulting approximant, besides being numerically ill-conditioned,
will capture the function well only in the middle of the interval
while exhibiting highly oscillatory behavior toward the ends of WhereN*(E') is the density of states of the transition state at
the interval; this pathology is known as the Runge phenomenon.energyE'. The inverse Laplace expression for the integrated
The Laguerre basis set is able to overcome this precisely becaus€ensity at zero angular momentum is given by
the Sturm-Liouville weight function for the Laguerre basis is
a damping exponential. h

2.3. Computingk(E,J) by Interpolating for the Integrated G*(E — Ep) =—|B,N(E — E,) +
Density. In order to computek(E,J) for a nonzero angular o
momentum, we must know the integrated density of siat¢& M-1 (E — Ew)”’1
— Ej) of the transition state. Knowledge @&*(E — Ey) is ZﬁnfE—u(E' — E.)N(E — E')dE'| (2.40)
sufficient to determin&s*(E — E;) through the relation = 0 (n—21)!

GHE—Ep) = [, 'N¥E)dE (2.39)

GE—-E)=CG"E,~E),E;,=E+(E,—E) (2.34) In the limit of M — « eqgs 2.39 and 2.40 are identical. Because
the Laguerre basis is orthonormal and complete overo[,
In other words, the knowledge d{(E,0) from the inverse g, decays rapidly as a function &1. In the cases examined
Laplace step in eq 2.32 and the density of states of all chemically py us gy, is negligibly small forM > 10. We note that the
active modes of the dissociating moleciE) provides us with  forms of egs 2.39 and 2.40 are identical, in the sense that both
the integrated density of stat€(E — E,) for any E;. We of them are convolutions in energ\N*(E') is a function of the
suggest here a smooth radial basis function (RBF) approxifiant frequencies and degeneracies of the transition state. Similarly
to the integrated density of states. In the RBF approch we fit {8+ 0 < n < M — 1} are functions of the frequencies and
h degeneracies of the transition state, except that they have been
—k(E,0)N(E) (2.35) determined numerically from the knowledge of the limiting high-
a pressure rate coefficient alone. The smooth function ap-
to the special form proximation to the density of states of the transition state is
then given by

d

h
—K(E,ONE) =1, + S 4o(|E — E, 2.36 h d
HEONO=hoE SIMEED 30 ey e e ey s

with the constraint M-1 h(E+E,—E)""
— U(E + E, — E,)N(Ey) +
C =0 (2.37) A (- N .
£ i . M—1 h E+EO(E' _ n—1

d
B[y ————UE —E,)—NE +E,~ E)dE
Here the normlE — Eill denotes the absolute value Bf- E. =1 o (n=1)! dE
Thed parametrsl;, i = 1, ...,d, are to be determined by matrix (2.412)
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Equation 2.41 is obtained by differentiating eq 2.40; an momentum) at whicl&*(E — Eg(t)) possess a local minimum.
application of the NewtonLeibniz formula. We may note that ~ The centrifugal factof'®(s) is now given by
eq 2.40 is of utility in determining the critical energy for

dissociation E; from the knowledge of the high-pressure 1 » Q)] Q@
activation energyE., and the coefficient§,; 0 < n < M — £2(T) = Tfo (2J+ 1) exg— ———|dJ (2.46)
1} Q rot(-r) kBT

2.5. Threshold Behavior of the Inverse Laplacek(E,J). ) . - ) .
It has been shown by Rigeand Fors® that the threshold ~— WhereQ"(T) is the associated partition functiom(J) is now
behavior of the microcanonical transition state theory rate €valuated atmin(J), which is a function of; and is the reaction

coefficient obeys coordinate at whiclis*(E — E,(t)) possesses a local minimum.
Evaluation of the centrifugal factor cannot be accomplished
) 1 unlesstmin(J) is known for allJ. Without any knowledge of
E'[nEDk(E,O) = hN(E,) (2.42) the transition state frequencies and degeneracies, which will be

dependent on the reaction coordinate, it is not possible to obtain

. . . . L tmin(J) for eachd.
wherekEy is the effective critical energy for the dissociation of This seems to render the inverse Laplace framework self-
the molecule when the angular momentum quantum number i jefeating because the essential appeal in the non-variational

set to zero. For very low energi@d(E) can be viewed as &  reatment has been that the knowledge of the limiting high-
linear combination of discrete delta functions which are widely pressure rate coefficient circumvents the need to know the

spaced. This gives rise to the fine structure or jaggedness ofyansition state frequencies and degeneracies. Because the
the microcanenical transition state theory rate coefficients which |imiting high-pressure rate coefficient represents the equilibrium
is pronounced at very low energies, but present in principle at average over the total ener§yand total angular momentudy

higher energies. . . . recovering themin(J) at which the integrated density achieves
At the threshold, the inverse Laplace microcanonical rate 3 minimum at a giverd from k.(T) seems implausible if not
coefficient obeys downright impossible.
Rigorous Monte-Carlo calculatidd of the variational mi-
N(E, — E.) crocanonical transition state theory rate coefficients is compli-

EI[nEOk(E,O) - ﬁow + O(kgT) (2.43) cated. It is computationally expensive and requires the knowl-
0 edge of many parameters pertinent to the potential energy
surface but not any knowledge of the limiting high-pressure
rate coefficient. For8thas proposed a variational theory
wherein a simple interpolation strategy, which switches between
the reactant and product frequencies as a function of the reaction
coordinate, is used. His method is computationally undemand-

where we have taken the appropriate limit of eq 2.32. For
consistency with microcanonical transition state theory, it is
necessary that

hBN(E, — E,) =1 (2.44) ing but does require the knowledge of the limiting high-pressure

rate coefficient to adjust his switching function.
where we have neglected tl¢ksT) term in eq 2.43. The lack In conclusion the inverse Laplace transform method of
of experimental information often leads kineticists to Egto calculating microcanonical transition state theory rate coef-

E.. However, a semiclassical model of the density of states ficients proposed here should be used for cases where it is
will lead to zero density of states at zero energy. Equation 2.44 |egitimate to locate the position of the transition state at the
would then imply that3o = «. Our examination of specific  centrifugal maximum of the effective interfragment potential.
cases leads us to observe tfiatis finitely large andN(Ey — It requires the knowledge of the limiting high-pressure rate
E.) is thus small but nonzero. This implies tl&texceed<., coefficient and does not embed any adjustable parameters.
by a fewksT conforming the analysis presented by Forstinref ~ 2.7. Summary of the Underlying Assumptions. We now
13. As a consequenck; < Ep for anyJ, which is physically recapitulate the assumptions invoked in the derivation of the
plausible. E; can be numerically estimated frdgs, by applying inverse Laplace method described here.
the Newtor-Raphson technique to equation 2.40. It has been assumed throughout that the limiting high-pressure
2.6. Variational Microcanonical Rate Coefficients and the rate coefficient is known exactly. In reality, there will exist
Inverse Laplace Method. A prinicipal advantage of the inverse  systematic experimental errors in these measured coefficients.
Laplace procedure described here is that there are no adjustabl&urthermore, they are usually measured accurately only over
parameters and that guessing the frequencies and degeneracieslected temperature ranges and this can introduce an artificial
of the transition state is obviated. A drawback of the method skewness; notable exceptions include the reactions of methyl
is that the position of the transition state is not located isocyanide, ethyl isocyanide, cyclopropane, cyclobutane, hy-
variationally, and hence, the microcanonical rate coefficients drazine, nitrous oxide, and carbon dioxide for which compre-
thus generated will not be descriptive of the kinetics of simple hensive measurements are availdblélhis artifical skewness
bond-fission unimolecular reactions, particularly at low tem- of data, when it occurs, is the major source of objections to the
peratures. Extension of the inverse Laplace procedure toinverse Laplace method. However, the objection in fact applies
incorporate a variational treatment presents difficulties. Con- to all methods drawing information frotk,(T); such as those
sider eq 2.14 within a variational framework, that guess the frequencies and degeneracies of the transition
state fromk.(T). In section 5 below, we propose a method of
reducing the error from this source. A second source of error
} (2.45) will be due to the finite truncation of the Laguerre series in eq
2.24. Equation 2.24 is an exact equality whdn— c. One
can prové? that the coefficients of the Laguerre expansion of
where tmin is the reaction coordinate (for zero angular asmooth function, such &s(s), decay faster than algebraically.

Ko(5)Q(S)

GE— EO(tmin)) = gl‘l[ fvar(s)
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E — E\n12
o/kg )

(E — Eoo))u(E’ — E_)N(E — E")dE’ (3.5)

Based on a steepest descent analysis it can be $héthat
the truncation error in eq 2.24 is given by the following
asymptotic order of magnitude relationship

A,
K(E,0N(E) = i LE(
o

Jn1(2 .

whereM is the total number of retained basis functions in the Hereu(E' — E.) is the Heaviside function anti-; is the Bessel
Laguerre expansion. In our calculations, it was found that a function of continuous ordem — 1 and is given b¥’
choice of M = 10 was sufficient to obtain negligibly small

truncation error 0 (a,_,) (2.47)

truncation errors. For a critical appraisal of the convergence la,,
properties of Laguerre spectral expansions, the reader is referred]nl(2 k_B(E - Ew)) -
to ref 32.

(i) Rotations may be treated semiclassically and that overall lf” cod(n—1)9 — 2 /E(Ev —E,)sin6|do —
rotations can be decoupled from the total enekgy This 70 kg ®
assumption will be invalid for very low temperatures. sin[(n — )] o

(ii) In the treatment of the intramolecular energy transfer, Tfo exg— (n—1)0 —
simplifications inherent in the quasidiatomic model of energized
complexes may be relied upon; the analysis can be extended to o, .
include the effect of asymmetric rotots. 2 A/ @(E B E“)Smhe]de (3-6)

(iii) The microcanonical rate coefficientk(E,J) may be
modeled using microcanonical transition state theory. This is Equation 3.6 is valid folE' > E.. As for the case of the
a safe assumption provided the barrier heights for the reactionevaluation of the centrifugal factor, equation 3.6 is easily and
are higher than a certain low threshold limit. accurately evaluated by quadratéfé?

(iv) The integrated density of the transition state may be  One may note that the integrand of the first integral in the
obtained from a smooth radial basis approximant. The inte- right-hand side of eq 3.6 is an oscillatory functionEf— E..
grated density is a monotonically increasing function but is best In particular for large values @& — E., k(E,0), as given by eq
described as a linear combination of Heaviside functions. The 3.5 will not only exhibit negative curvature but will also assume
radial basis approximant will provide very accurate approxima- rapidly oscillating negative values, becalsandE are Laplace
tions to the integrated density provided the number of centers transform pairs and it is necessary that
for the radial bases is taken to be suitably large.
limk,,(T) = lim K(E,0)

3.7)

3. A Pathology in Using van't Hoff's Modification of

Arrhenius’ Form holds. The pathological behavior in using the modified Arrhe-
Non-Arrhenius forms for the limiting high-pressure rate hius formalism arises because in the high-temperature limit the

coefficient have been considered before for the generation of k-(T) given by eq 3.3 asymptotes to zero, when in fact it should

microcanonical rate coefficients by the use of the inverse approach infinity or asymptote to a finitely large value. Such

Laplace transform procedure. In particular, Pritckaatd Forst
and Turrelf® have investigated the forms

(3.1)

E.
k(D =AT exp(— kﬁ)

with n > 0, and

i 3.2
k1 O
with A > 0. However these forms do not allow for nonmono-
tonicity in the limiting high-pressure rate coefficient. An

approacPf might be to use the modification efan’t Hoff to
Arrhenius’ form,

Ko(T) = A, €Xp@T) exﬁ{—

k.TT) (3.3)

with n > 0 anda. > 0. This form allows for decay at high
temperatures while exhibiting increasing behavior at low
temperatures. For simplicity of exposition, we neglect the
centrifugal factor in eq 2.16

ko(T) = AT exp(—aT) eXP(— =

KEONE) =L {k,(9} ®L {Q()}  (3.4)

and upon substituting eq 3.3 we obtain

pathology does not arise in our generic Laguerre representation
given by eq 2.24.

4. A Comparison of the Inverse Laplace and RRKM Rate
Coefficients

In this section we present the comparison of the micro-
canonical rate coefficients obtained from the inverse Laplace
and RRKM methodologies for two well studied reactions; the
RRKM methodology requires explicit knowledge of the fre-
guencies and degeneracies of the transition state while the
inverse Laplace methodology does not. Our paramount objec-
tive is to compare the microcanonical rate coefficients obtained
from these methods rather than elucidating the chemical
dynamics of the reactions considered. Accordingly, the calcula-
tions have been performed at selected temperatures for each
system. Defining the relative error between the inverse Laplace
and the RRKM microcanonical rate coefficient as

k(E“]) | Laplace
k(E"]) | RRKM

the results are presented here for specific total angular momenta
Jwith respect to two norms. The first is the infinity noémn,(J)
which we define as

f‘S-Lm(‘-]) = [ | R(E,J) |] maximum

REJ) =1— (4.1)

4.2)

and represents the maximum deviation, over the total energy
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TABLE 1: Comparison of the Inverse Laplace and RRKM Microcanonical Rate Coefficients for the Decomposition of the
Ethyl Radical for 10- and 15-Term Laguerre Expansion

( L I<(E,J)|Lap|ace)2 &l
k(E"J)lRRKM

k(E,J )=
total angular £ Q)= “1 - Wﬂ £,0 T
momentum ( 1 )|RRKM maximum E
(a) 10 Term
0 3.4e-05 1.26-05
20 4.1e-06 1.00-06
40 3.7e-06 166-06
60 3.3e-06 1.66.06
80 3.3e-06 146-06
100 1.9e-07 116.07
200 2.3e-08 176.08
(b) 15 Term
0 1.0e-6 1.0e-06
20 7.3e-07 17007
40 6.3e-07 176-07
60 9.8e-08 99608
80 7.0e-08 6.56-08
100 3.2¢-08 > 36.08
200 2.6e-08 5 16.08

E, of the inverse-Laplace microcanonical rate coefficient from calculations. Table 1 displays the relative errors in the inverse

the RRKM microcanonical rate coefficient relative to the latter. Laplace coefficients with respect to the RRKM coefficients for

The second is the Euclidean no#&n,(J) which we define as Laguerre expansions with certain specific number of terms and
Figure 1 depicts the same errors for certain fixed total energies

f R(E, 3)2 dE 12 and certain fixed total angular momenta. The equidistant energy
E.)= JE T (4.3) spacing taken in these calculations was 0.1 kcal/mol. All of
2 fE dE the plots display the results for the case of the ten-term Laguerre

expansion. It can be seen that the relative errors with respect
and represents the averaged Euclidean norm of the deviationi© the infinity- and Euclidean-norms are so small that the
of the inverse Laplace microcanonical rate coefficient from the Microcanonical rate coefficients delivered by these two methods
RRKM microcanonical rate coefficient relative to the latter over aré Virtually identical over the entire range of total angular

the total energfE. Additionally, the relative error®(E,J) are momentaJ € [0, 200] and the entire range of total energy-E
graphically displayed for chosen fixed total energies and fixed [0: 200] Kcal/Mole. Additional comparisons and a full com-
total angular momenta. pendium of results for this reaction are available in [17].
4.1. The Decomposition of the Ethyl Radical. The 4.2. Isomerization of Methyl Isocyanide. The isomeriza-
S-scission of the ethyl radical tion of methyl isocyanide
CHe — C,H, + H (4.4) CH,NC < CH,CN (4.5)

is a well-studied reaction. Estimates of the transition state has proven to be of great importa#ééd®in the development
parameters are available from an ab initio calcul&favhich of unimolecular reaction rate theories. In 1987, Roenigk and
shows good agreement with experimental dat&ecently, Feng co-workerd! theoretically estimated the high-pressure param-
and co-worker® have studied the weak-collision effects in this eters for this reaction by non-linear regression of RRKM
reaction in a helium bath. We have chosen the transition statepredictions on published experimental d&4® We performed
frequencies and degeneracies, rotational constants, and thénverse-Laplace and RRKM calculations based on the limiting
limiting high-pressure data from their study. The limiting high- high-pressure and transition state parameters described in their
pressure Arrhenius parametéks and E., were obtained as a  work. The ratio of the limiting high-pressure rate coefficient
function of temperature for the range 200100 K. These were  to the centrifugal factor was computed over a densely spaced
then used to generate the limiting high-pressure rate coefficienttemperature grid of the range 46600 K. This was then fitted
over a dense set of points covering the said temperature rangeto a Laguerre representation of the form eq 2.24 \Hititaken

The ratio of the limiting high-pressure rate coefficient to the to be the mean of the values recommended in ref 41. The
centrifugal factor was computed at each of these points and wasinverse Laplace microcanonical rate coefficients were generated
fitted to a Laguerre expansion of the form given by equation separately for Laguerre expansions with 10, 15, and 20 terms;
2.24. TheE, in eq 2.24 is taken to be the best fit fBg over in carrying out the inversions, the Laguerre expansions were
the temperature range 20@100 K. The inverse Laplace inverted over the entire temperature rangesd, The micro-
microcanonical rate coefficients were generated separately forcanonical RRKM rate coefficients were generated using Gil-
Laguerre expansions with 10, 15, and 20 terms; in carrying out bert's UNIMOL codé® with identical manner of computations
the inversions, the Laguerre expansions were inverted over theof the density of states. Table 2 displays the relative errors in
entire temperature range [8). The microcanonical RRKM the inverse Laplace coefficients with respect to the RRKM
rate coefficients were generated using Gilbert's UNIMOL coefficients for Laguerre expansions with certain specific
codel® The methods for computing the density of states and number of terms and Figure 2 depicts the same errors for
the energy spacings were taken to be identical in both of thesecertain fixed total energies and certain fixed total angular
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TABLE 2: Comparison of the Inverse Laplace and RRKM Microcanonical Rate Coefficients for the Isomerization of the
Methyl Isocyanide for 10- and 15-Term Laguerre Expansion

f(l _ k(EyJ)lLaplace)2 dE 12
E k(E"J)lRRKM

k(E,J J) =
total angular & )= ‘1 - M‘1 &, f &
momentum N K(E,)|rricm | | masimum £
(a) 10 Term
0 2.4e-06 2.2e-06
20 2.5e-06 2.2¢-06
40 1.04e-06 1.0e-06
60 1.04e-06 1.1e-06
80 8.1e-07 8.0e-07
100 3.0e-07 2.6e-07
200 1.12e-07 1.09e-07
(b) 15 Term
0 2.2e-6 2.1e-06
20 9.3e-07 8.9e-07
40 8.2e-07 7.6e-07
60 7.4e-07 7.3e-07
80 4.9e-07 3.4e-07
100 1.07e-07 9.7e-08
200 1.07e-07 9.9e-08

momenta. The equidistant energy spacing taken in thesefor such reactions are only weak functions of temperature thus
calculations was 0.1 kcal/mol. All of the plots display the allowing experimental measurements over a wide range of
results for the case of 10-term Laguerre expansion. As for the temperature. Hence, in computing tlie and J dependent
case of the decomposition of the ethyl radical, the relative errors microcanonical rate coefficients for gas phase dissociation
with respect to the infinity and Euclidean norms are so small reactions via the method described in this paper, the employment
that the microcanonical rate coeffients delivered by these two of the experimental limiting high-pressure rate coefficients of
methods are virtually identical over the entire range of total the associated recombination reaction through the relation with
angular momentd € [0, 200] Kcal/mol. As with the case of  the equilibrium constant will result in more accurate micro-
the decomposition of the ethyl radical, additional comparisons canonical rate coefficients for the dissociation process than with
and conspectus of results for this reaction are available in ref those obtained from the knowledge of the limiting high-pressure
17. dissociation rate coefficients.

The full data set for each of the aforementioned examples Superb agreement between the inverse Laplace and the
and the computer programs for the computation of the micro- RRKM microcanonical rate coefficients has been obtained here
canonical rate coefficients from thermal data are available from for the two cases studied because of the excellent correlation

the authors. between the transition state parameters and the best available
thermal data for each of these cases; in the case studied, the
5. Coping with a Finite Temperature Range best available thermal data are really very good representations

o ) of the exact thermal data and the Laguerre approximants
A criticism leveled on the inverse Laplace methodology for accyrately capture the asymptotic behavior of the thermal data

deriving microcanonical rate coefficients has been that the 4 the houndaries of zero and infinite temperature. The method
limiting high-pressure rate coefficient is experimentally measur- proposed herein is an excellent technique to deduce micro-

able only over a finite range of temperature while the Laplace ¢anonjcal coefficients But, great progress in the utility of the
transform is taken over the semiinfinite temperature rang®){0, iy erse Laplace method as an instrument for modeling uni-
Such criticism is equally applicable to using the RRKM 5jacyar reactions cannot be made unless the issue of coping
formalism for computing microcanonical rate coefficients when it 4 finitie temperature range is addressed in a rigorously
the transition state frequencies and degeneracies are obtaineg,sthemical fashion. The mathematical problem is one of
via regression from identities relating them to the limiting high- - gjmytaneous interpolation, extrapolation, and approximation of
pressure rate coefficient. For small molecules, the transition 5 | nivariate function over semi-infinite support. The full
state frequencies for gas phase dissociation reactions can bgna\ytical features of this function over a semi-infinite support
accurately computed using ab initio methods; for such molecules yee to be estimated from those of another function over a finite
RRKM is the method of choice. In general, for larger gypnort. The tools of the mathematical theory of sampling of
molecules, there will be errors in the frequencies computed by nctiong647which have been maturely developed in the fields
ab initio methods which will be tightly correlated with the  of information and communications theories are perhaps best

computed barrier heights and it is a well-known fact that ab g jited for such a purpose and may form the starting point for
initio estimates of the barrier heights of gas phase dissociation ¢ ither research in this area.

reactions are often overestimates.

It has been arguéti*>that while experimental values of the
limiting high-pressure rate coefficient for gas phase dissociation
reactions cannot in general be determined accurately over a wide In this paper we have proposed an extension of the inverse
temperature range, precise experimental techniques are availableaplace methodology originally developed by Forst in the late
for measuring rate constants for gas phase recombinationsixties and early seventies. The original formalism treated
reactions and that the limiting high-pressure rate coefficients rotations by assuming a temperature-independent centrifugal

6. Conclusions
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Figure 1. (a) Decomposition of the ethyl radical. Comparison of the  Figure 2. (a) Isomerization of methyl isocyanide. Comparison of the
inverse laplace and RRKM microcanonical rate coefficientsJfer inverse Laplace and RRKM microcanonical rate coefficientslfer
60. (b) Decomposition of the ethyl radical. Comparison of the inverse gq_ (b) Isomerization of methyl isocyanide. Comparison of the inverse
Laplace and RRKM microcanonical rate coefficients Bor- E; = 75 Laplace and RRKM microcanonical rate coefficients Eor- E; = 75
kCal/mol. kCal/mol.

factor. The limiting high-pressure rate coefficient was assumed our method, which obviates the need to know the frequencies
to be of Arrhenius or monotonic non-Arrhenius forms. This and degeneracies of the transition state, are identical to those
gave rise to certain limitatioAsin the method as discussed in  obtained from direct RRKM calculations which require explicit
sections 1 and 3. Our principal contribution here has been to knowledge of such frequencies and degeneracies. This has been
provide a more general framework for the inverse Laplace demonstrated on the unimolecular decomposition of the ethyl
methodology. A spectral Laguerre expansion is used to radical and the isomerization of methyl isocyanide. The
accurately approximate the ratio of any arbitrary limiting high- advantage of our method is that it possesses no adjustable
pressure rate coefficient to a temperature-dependent centrifugaparameters and requires only the knowledge of the limiting high-
factor. Assuming separability from the total energy, overall pressure rate coefficient and rotational constants. It does not
rotations are treated explicitly within the boundaries of the require the frequencies and degeneracies of the transition state.
semiclassical approximation. We have shown that the micro- The position of the transition state is located at the centrifugal
canonical transition state theory rate coefficients derived from maximum of the effective interfragment potential. The method,
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of course, requires knowledge of thermal data over a reliably
wide temperature range.

As is well recognized, there are substantial difficulties
associated in calculating the microcanonical transition state
theory rate coefficients for reactions without a chemical barrier

where it is necessary to locate the position of the transition state

at the variational minimum of the cumulative reaction prob-
ability along the reaction coordinate. Unfortunately, this
variational calculation cannot be performed with the knowledge
of the thermally averaged limiting high-pressure rate coefficient
[K(E,J)Hquiibrium @lone.  In order to extend the inverse Laplace
formalism to obtain variational microcanonical coefficients

without the knowledge of the frequencies and degeneracies of,

J. Phys. Chem. A, Vol. 102, No. 42, 1998115

(9) Forst, W.J. Phys. Cheml1991 95, 3612.

(10) Gilbert, R. G.; Smith, S. C.; Jordan, M. J. UNIMOL Program
Suite Available from the authors: School of Chemistry, Sydney University,
NSW 2006, Australia, or by e-mail: gilbert_r@summer.chem.su.oz.au.

(11) Bauer, S. HJ. Chem. Phys1939 7, 1097.

(12) Slater, N. BProc. Leeds Philos. Lit. Soc., Sci. Sek995 6, 259.

(13) Forst, W.J. Phys. Cheml972 76, 342.

(14) Yau, A. W,; Pritchard, H. OCan. J. Chem1978 56, 1389. Related
and important contributions also include Pritchard, H. O.; Diker, G. M.;
Yau, A. W. Can. J. Chem198Q 58, 1516 and Pritchard, H. GCan. J.
Chem 198Q 58, 2236.

(15) Pritchard, H. OThe Quantum Theory of Unimolecular Reactions
Cambridge University Press: Cambridge, U.K., 1984.

(16) Courant, R.; Hilbert, DMethods of Mathematical Physid#/iley-
Interscience: New York, 1953; Vol. 1.

(17) Venkatesh, P. K. Studies in chemical reaction engineering. Ph.D.
esis, Department of Chemical Engineering and Materials Science,

the transition state, it is necessary, at the very least, to know University of Minnesota, Minneapolis, Minnesota, UMI Microform 9719692,

from experiment or otherwise the viue kf(T,J), the limiting
high-pressure rate coefficient as a function of temperaflire,
and the total angular momentudn for eachJ. Since this is
not practicable, it appears that the inverse Laplace formalism
is limited for reactions possessing no chemical barrier.

In conclusion, the inverse Laplace formalism presented here

should be viewed as an alternative means of obtaining micro-
canonical transition state theory rate coefficients for certain
classes of elementary unimolecular or bimolecular reacfimns
which high-pressure experimental data areadable over a
reliably wide temperature rangeln particular the method could
prove to be a useful means of obtaining such microcanonical
rate coefficients for multiple-well reactions where data for the

University Microfilms, Ann Arbor, MI.

(18) Murray, J. D.Asymptotic AnalysjClarendon: Oxford, 1974.

(19) Dubner, H.; Abate, Jl. Assoc. Comput. Machi968 15, 115.

(20) Stehfest, HCommun. ACML969 13, 368-P1.

(21) Crump, K. SJ. Assoc. Comput. Machi976 23, 89.

(22) Davies, B., Martin, BJ. Comput. Physl979 33, 1.

(23) Boyd, J. PJ. Comput. Phys1982 45, 73.

(24) Cheney, E. Wintroduction to Approximation Theorn2nd ed.;
Chelsea: New York.

(25) Abramowitz, M.; Stegun, |. AHandbook of Mathematical Func-
tions Dover: New York, 1970.

(26) Schoenenberg, C.; Forst, \0.. Comput. Chenll985 6, 5, 455.

(27) Powell, M. J. DThe Theory of Radial Basis Function Approxima-
tion in 1990 Cambridge University Numerical Analysis Report, DAMTP/
1990/NA11; Cambridge University Press: Cambridge, U.K., 1990.

(28) Micchelli, C. A.Constructve Approximation1986 2, 11.

(29) Powell, M. J. DTruncated Laurent Series Expansions for the Fast

isomerization transition states’ frequencies and degeneracies aré&valuation of Thin Plate Spline€ambridge University Numerical Analysis

scarce and not well-known.

Acknowledgment. We thank Professor Wendell Forst for
his critical reading of an earlier version of this manuscript

Professor Bengt Fornberg for discussions on spectral approxi-
mants and radial basis functions, and Professor William Green g

for his constructive criticism. Financial support for this work
was provided by the Exxon Research and Engineering Co.,
Annandale, NJ, the Department of Chemical Engineering and
Materials Science at the University of Minnesota, Minneapolis,
MN, and the National Science Foundation under Grant NSF/
CTS-9504827. Computational support was provided by the
Minnesota Supercomputing Institute.

References and Notes

(1) Forst, W.Theory of Unimolecular Reactiong\cademic: New
York, 1973.

(2) Troe, JJ. Phys. Cheml1979 83, 114.

(3) Gilbert, R. G.; Smith, S. CTheory of Unimolecular and Recom-
bination ReactionsBlackwell: Oxford, 1990.

(4) Benson, S. WThermochemical Kinetic2nd ed.; Wiley: New
York, 1976.

(5) Melissas, V. S.; Truhlar, D. G.; Garrett, B. £.Chem. Physl992
96, 5758.

(6) Green, W. H.; Moore, C. B.; Polik, W. Annu. Re. Phys. Chem.
1992 591.

(7) Klippenstein, S. J.; Marcus, R. A. Phys. Chem1988 92, 3105.

(8) Smith, S. CJ. Phys. Chem1993 97, 7034.

Report, DAMTP/1992/NA 10; Cambridge University Press: Cambridge,
U.K., 1992.

(30) Golub, G. H.; van Loan, C. Matrix ComputationsJohns Hopkins
University Press.

(31) Rice, O. K.Statistical Mechanics, Thermodynamics and Kinetics
W. H. Freeman:
(32) Maday, Y.; Pernaud-Thomas, B.; VandevenRidch. Aeros{l985
13.
(33) Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T.Spectral
Methods in Fluid DynamicsSpringer-Verlag: New York, 1988.

(34) Aubanel, E. E.; Wardlaw, D. M.; Zhu, L.; Hase, W. Int. Rev.
Phys. Chem1991, 10, 249.

(35) Forst, W.; Turrell, Sint. J. Chem. Kinet1981, 13, 283.

(36) Chang, A. Y. 1995. Private Communication.

(37) Whittaker, E. T.; Watson, G. NA Course of Modern Analysis
Cambridge University Press: Cambridge, U.K., 1952.

(38) Pacansky, J.; Koch, W.; Miller, M. DI. Am. Chem. Sod 991
113 317.

(39) Pacansky, J.; Dupuis, M. J. Am. Chem. Sod.982 104, 415.

(40) Feng, Y.; Niiranen, J. T.; Bencsura, A.; Knyazev, V. D.; Gutman,
D.; Tsang, W.J. Phys. Chem1993 97, 871.

(41) Roenigk, K. F.; Jensen, K. F.; Carr, R. \W.Phys. Cheml1987,
91, 5732.

(42) Schneider, F. W.; Rabinovitch, B. &.Am. Chem. S0d.962 84,
4215.

(43) Fletcher, F. J.; Rabinovitch, B. S.; Watkins, K. W.; Locker, D. J.
J. Phys. Chem1966 70, 2883.

(44) Davies, J. W.; Green, N. J. B.; Pilling, M. Chem. Phys. Lett.
1986 126, 373.

(45) Pilling, M. J.; Robertson, S. H.; Seakins, P. W.Chem. Soc.,
Faraday Trans1995 91 (23), 4179.

(46) Shannon, C. BProc. IRE1949 37, 10.

(47) Butzer, P. L.; Stens, R. ISiam Re. 1992 34, 1, 40.



